Learn More
A control plane is a key enabling technique for dynamic and intelligent end-to-end path provisioning in optical networks. In this paper, we present an OpenFlow-based control plane for spectrum sliced elastic optical path networks, called OpenSlice, for dynamic end-to-end path provisioning and IP traffic offloading. Experimental demonstration and numerical(More)
OpenFlow, as an open-source protocol for network virtualization, is also widely regarded as a promising control plane technique for heterogeneous networks. But the utilization of the OpenFlow protocol to control a wavelength switched optical network has not been investigated. In this paper, for the first time, we experimentally present a proof-of-concept(More)
OpenFlow, which allows operators to control the network using software running on a network operating system within an external controller, has recently been proposed and experimentally validated as a promising intelligent control plane technique. To mitigate the potential scalability issue of an OpenFlow-based centralized control plane and to leverage the(More)
Control plane techniques are very important for optical networks since they can enable dynamic lightpath provisioning and restoration, improve the network intelligence, and greatly reduce the processing latency and operational expenditure. In recent years, there have been great progresses in this area, ranged from the traditional generalized multi-protocol(More)
A path computation element (PCE) is briefly defined as a control plane functional component (physical or logical) that is able to perform constrained path computation on a graph representing (a subset of) a network. A stateful PCE is a PCE that is able to consider the set of active connections, and its development is motivated by the fact that such(More)
This paper presents and experimentally evaluates efficient strategies for dynamic source/Path Computation Element (PCE) routing with aggregated resource information and advanced distributed spectrum allocation algorithms in Generalized Multi-Protocol Label Switching (GMPLS)-controlled elastic optical networks.
Current optical transport networks use optical channel carriers (wavelengths) that are defined and constrained by a fixed ITU-T dense wavelength division multiplexing (DWDM) grid. Such a grid is not adapted to high data rates (beyond 100 Gb/s) and is inefficient when a wavelength is assigned to a low-rate optical signal. Consequently, the ITU-T is updating(More)