Learn More
Mathematical models of the action potential in the periphery and center of the rabbit sinoatrial (SA) node have been developed on the basis of published experimental data. Simulated action potentials are consistent with those recorded experimentally: the model-generated peripheral action potential has a more negative takeoff potential, faster upstroke, more(More)
BACKGROUND Class III antiarrhythmic agents commonly exhibit reverse frequency-dependent prolongation of the action potential duration (APD). This is undesirable because of the danger of bradycardia-related arrhythmias and the limited protection against ventricular tachyarrhythmias. The effects of blockade of separate components of delayed rectifier K(+)(More)
This article focuses on the regional heterogeneity of the mammalian sinoatrial (SA) node in terms of cell morphology, pacemaker activity, action potential configuration and conduction, densities of ionic currents (i(Na), i(Ca,L), i(to), i(K,r), i(K,s) and i(f)), expression of gap junction proteins (Cx40, Cx43 and Cx45), autonomic regulation, and ageing.(More)
The effect of block of the L-type Ca2+ current by 2 microM nifedipine and of the Na+ current by 20 microM tetrodotoxin on the center (normally the leading pacemaker site) and periphery (latent pacemaker tissue) of the rabbit sinoatrial node was investigated. Spontaneous action potentials were recorded with microelectrodes from either an isolated right(More)
BACKGROUND There is an effort to build an anatomically and biophysically detailed virtual heart, and, although there are models for the atria and ventricles, there is no model for the sinoatrial node (SAN). For the SAN to show pacemaking and drive atrial muscle, theoretically, there should be a gradient in electrical coupling from the center to the(More)
Gprotein-activated inwardly rectifying K+ channel (GIRK or Kir3) currents are inhibited by mechanical stretch of the cell membrane, but the underlying mechanisms are not understood. In Xenopus oocytes heterologously expressing GIRK channels, membrane stretch induced by 50% reduction of osmotic pressure caused a prompt reduction of GIRK1/4, GIRK1, and GIRK4(More)
The mechanism of nicorandil-induced large inward tail current (Itail) in single guinea-pig ventricular cells was investigated using the whole-cell patch-clamp technique. In the presence of 0.5-1.0 mM nicorandil, an activator of adenosine 5'-triphosphate (ATP)-sensitive K+ current (IKATP), a depolarization pulse causing a large outward current was followed(More)
AIMS Atrial dilatation and myocardial stretch are strongly associated with atrial fibrillation (AF). However, the mechanisms by which the three-dimensional (3D) atrial architecture and heterogeneous stretch contribute to AF perpetuation are incompletely understood. We compared AF dynamics during stretch-related AF (pressure: 12 cmH(2)O) in normal sheep(More)
Effects of block of the rapid delayed rectifier K+ current (IK,r) by E-4031 on the electrical activity of small ball-like tissue preparations from different regions of the rabbit sinoatrial node were measured. The effects of partial block of IK,r by 0.1 microM E-4031 varied in different regions of the node. In tissue from the center of the node spontaneous(More)
Background—Sustained bradycardia is associated with long-QT syndrome in human beings and causes spontaneous torsades de pointes in rabbits with chronic atrioventricular block (CAVB), at least partly by downregulating delayed-rectifier K ϩ-current to cause action potential (AP) prolongation. We addressed the importance of altered Ca 2ϩ handling, studying(More)