Learn More
The CB1 cannabinoid receptor has been implicated in the regulation of bone remodeling and bone mass. A high bone mass (HBM) phenotype was reported in CB1-null mice generated on a CD1 background (CD1(CB1-/-) mice). By contrast, our preliminary studies in cb1-/- mice, backcrossed to C57BL/6J mice (C57(CB1-/-) mice), revealed low bone mass (LBM). We therefore(More)
We have recently reported that in bone the cannabinoid CB1 receptor is present in sympathetic terminals. Here we show that traumatic brain injury (TBI), which in humans enhances peripheral osteogenesis and fracture healing, acutely stimulates bone formation in a distant skeletal site. At this site we demonstrate i) a high level of the main endocannabinoid,(More)
Assessment of fracture healing is a common problem in orthopaedic practice and research. To determine the effectiveness of certain treatments, drugs, mechanical loads, or rehabilitation regimes, the strength of the fracture callus must be determined. Both clinically and experimentally, there is a need to noninvasively and quantitatively evaluate fracture(More)
External root resorption occasionally develops after intracoronal bleaching with hydrogen peroxide. In this study, an experimental model was established to study thermocatalytic bleaching-induced root resorption in dogs. Histological examination after 6 months revealed that 18% of the teeth had root resorption lesions. The lesions could be divided into(More)
The endogenous cannabinoids bind to and activate two G protein-coupled receptors, the predominantly central cannabinoid receptor type 1 (CB1) and peripheral cannabinoid receptor type 2 (CB2). Whereas CB1 mediates the cannabinoid psychotropic, analgesic, and orectic effects, CB2 has been implicated recently in the regulation of liver fibrosis and(More)
Major depression is associated with low bone mass and increased incidence of osteoporotic fractures. However, causality between depression and bone loss has not been established. Here, we show that mice subjected to chronic mild stress (CMS), an established model of depression in rodents, display behavioral depression accompanied by impaired bone mass and(More)
A functional endocannabinoid system is present in several mammalian organs and tissues. Recently, endocannabinoids and their receptors have been reported in the skeleton. Osteoblasts, the bone forming cells, and osteoclasts, the bone resorbing cells, produce the endocannabinoids anandamide and 2-arachidonoylglycerol and express CB2 cannabinoid receptors.(More)
Bone mass accrual is a major determinant of skeletal mass, governed by bone remodeling, which consists of bone resorption by osteoclasts and bone formation by osteoblasts. Bone mass accrual is inhibited by sympathetic signaling centrally regulated through activation of receptors for serotonin, leptin, and ACh. However, skeletal activity of the(More)
Heparan sulfate proteoglycans (HSPGs) are ubiquitous macromolecules. In bone, they are associated with cell surfaces and the extracellular matrix (ECM). The heparan sulfate (HS) chains of HSPGs bind a multitude of bioactive molecules, thereby controlling normal and pathologic processes. The HS-degrading endoglycosidase, heparanase, has been implicated in(More)
The use of endosseous titanium implants is the standard of care in dentistry and orthopaedic surgery. Nevertheless, implantation in low-density bone has a poor prognosis and experimental studies show delayed implant anchorage following gonadectomy-induced bone loss. Intermittently administered human parathyroid hormone 1-34 [iahPTH(1-34)] is the leading(More)