Learn More
In this article, we will present an overview of the Coupled Layered Architecture for Robotic Autonomy. CLARAty develops a framework for generic and reusable robotic components that can be adapted to a number of heterogeneous robot platforms. It also provides a hmework that will simplify the integration of new technologies and enable the comparison of(More)
We present in detail some of the challenges in developing reusable robotic software. We base that on our experience in developing the CLARAty robotics software, which is a generic object-oriented framework used for the integration of new algorithms in the areas of motion control, vision, manipulation, locomotion, navigation, localization, planning and(More)
— This paper presents an overview of a newly developed Coupled Layer Architecture for Robotic Autonomy (CLARAty), which is designed for improving the modularity of system software while more tightly coupling the interaction of autonomy and controls. First, we frame the problem by briefly reviewing previous work in the field and describing the impediments(More)
Planetary rovers enable good sample selection and retrieval for Mars sample return missions. After landing, the rovers search for the best possible scientific samples in the region around a lander, and they return these selected samples to an ascent vehicle that launches the samples into Mars orbit. To streamline the search for, the acquisition, and the(More)
We will present an overview of the CLARAty architecture which aims at developing reusable software components for robotic systems. These components are to support autonomy software which plans and schedules robot activities. The CLARAty architecture modifies the conventional three-level robotic architecture into a new two-layered design: the Functional(More)
This paper presents an overview of the intelligent decision-making capabilities of the CLARAty robotic architecture for autonomy. CLARAty is a two layered architecture where the top Decision Layer contains techniques for autonomously creating a plan of robot commands and the bottom Functional Layer provides standard robot capabilities that interface to(More)
— With each new rover mission to Mars, rovers are traveling significantly longer distances. This distance increase allows not only the collection of more science data, but enables a number of new and different science collection opportunities. Current mission operations, such as that on the 2003 Mars Exploration Rovers (MER), require all rover commands to(More)
—The recent decadal survey report for planetary science (compiled by the National Research Council) has prioritized three main areas for planetary exploration: (1) the characterization of the early Solar system history, (2) the search for planetary habitats, and (3) an improved understanding about the nature of planetary processes. A growing number of(More)
—We present an approach to efficient navigation of autonomous wheeled robots operating in cluttered natural environments. The approach builds upon a popular method of autonomous robot navigation, where desired robot motions are computed using local and global motion planners operating in tandem. A conventional approach to designing the local planner in this(More)
In this article, we will present an overview of the Coupled Layered Architecture for Robotic Autonomy. CLARAty develops a frammork for generic and reusable robotic components that can be adapted to a number of heterogeneous robot playbrms. It also provides a framework that will simplify the integration of new technologies and enable the comparison of(More)