Learn More
Over 1000 genetically linked RFLP loci in Brassica napus were mapped to homologous positions in the Arabidopsis genome on the basis of sequence similarity. Blocks of genetically linked loci in B. napus frequently corresponded to physically linked markers in Arabidopsis. This comparative analysis allowed the identification of a minimum of 21 conserved(More)
We report the annotation and analysis of the draft genome sequence of Brassica rapa accession Chiifu-401-42, a Chinese cabbage. We modeled 41,174 protein coding genes in the B. rapa genome, which has undergone genome triplication. We used Arabidopsis thaliana as an outgroup for investigating the consequences of genome triplication, such as structural and(More)
A genetic linkage map consisting of 399 RFLP-defined loci was generated from a cross between resynthesized Brassica napus (an interspecific B. rapa x B. oleracea hybrid) and "natural" oilseed rape. The majority of loci exhibited disomic inheritance of parental alleles demonstrating that B. rapa chromosomes were each pairing exclusively with recognisable(More)
A RFLP map of Brassica napus, consisting of 277 loci arranged in 19 linkage groups, was produced from genetic segregation in a combined population of 174 doubled-haploid microspore-derived lines. The integration of this map with a B. napus map derived from a resynthesized B. napus x oilseed rape cross allowed the 10 linkage groups of the B. napus A genome(More)
Oilseed rape (Brassica napus L.) was formed ~7500 years ago by hybridization between B. rapa and B. oleracea, followed by chromosome doubling, a process known as allopolyploidy. Together with more ancient polyploidizations, this conferred an aggregate 72× genome multiplication since the origin of angiosperms and high gene content. We examined the B. napus(More)
The major difference between annual and biennial cultivars of oilseed Brassica napus and B. rapa is conferred by genes controlling vernalization-responsive flowering time. These genes were compared between the species by aligning the map positions of flowering time quantitative trait loci (QTLs) detected in a segregating population of each species. The(More)
Arabidopsis thaliana (the model dicotyledonous plant) is closely related to Brassica crop species. Genome collinearity, or conservation of marker order, between Brassica napus (oilseed rape) and A. thaliana was assessed over a 7.5-Mbp region of the long arm of A. thaliana chromosome 4, equivalent to 30 cM. Estimates of copy number indicated that sequences(More)
The large number of genetic linkage maps representing Brassica chromosomes constitute a potential platform for studying crop traits and genome evolution within Brassicaceae. However, the alignment of existing maps remains a major challenge. The integration of these genetic maps will enhance genetic resolution, and provide a means to navigate between(More)
The progenitor diploid genomes (A and C) of the amphidiploid Brassica napus are extensively duplicated with 73% of genomic clones detecting two or more duplicate sequences within each of the diploid genomes. This comprehensive duplication of loci is to be expected in a species that has evolved through a polyploid ancestor. The majority of the duplicate loci(More)
A population of 169 microspore-derived doubled-haploid lines was produced from a highly polymorphic Brassica oleracea cross. A dense genetic linkage map of B. oleracea was then developed based on the segregation of 303 RFLP-defined loci. It is hoped that these lines will be used by other geneticists to facilitate the construction of a unified genetic map of(More)