Ismael Valladolid-Acebes

Learn More
Obesity and high-fat (HF) diets have a deleterious impact on hippocampal function and lead to impaired synaptic plasticity and learning deficits. Because all of these processes need an adequate glutamatergic transmission, we have hypothesized that nutritional imbalance triggered by these diets might eventually concern glutamate (Glu) neural pathways within(More)
Recent evidence has established that consumption of high-fat diets (HFD) is associated with deficits in hippocampus-dependent memory. Adolescence is an important period for shaping learning and memory acquisition that could be particularly sensitive to the detrimental effects of HFD. In the current study we have administered this kind of diets to both(More)
Recent studies provide evidence that high-fat diets (HF) trigger both i) a deficit of reward responses linked to a decrease of mesolimbic dopaminergic activity, and ii) a disorganization of circadian feeding behavior that switch from a structured meal-based schedule to a continuous snacking, even during periods normally devoted to rest. This feeding pattern(More)
It has been suggested that hyperglycemia and insulin resistance triggered by energy-dense diets can account for hippocampal damage and deficits of cognitive behaviour. We wonder if the impairment of learning and memory processes detected in diet-induced obese (DIO) mice is linked to diet composition itself. With this purpose we have evaluated learning(More)
High-fat (HF) diets trigger an increase in adipose tissue and body weight (BW) and disordered eating behavior. Our study deals with the hypothesis that circadian distribution of energy intake is more relevant for BW dynamics than diet composition. Four-week-old mice were exposed for 8 wk to a HF diet and compared with animals receiving control chow. HF mice(More)
PURPOSE Highly palatable foods behave as appetitive reinforcers and tend to be consumed compulsively. Nevertheless, the motivation for this kind of diets in experimental diet-induced obesity models has not been well established. Our hypothesis is that obesity caused by a regular consumption of high-fat diet (HFD) occurs concomitantly with the inhibition of(More)
Both functional ovaries and estrogen replacement therapy (ERT) reduce the risk of type 2 diabetes (T2D). Understanding the mechanisms underlying the antidiabetic effects of 17β-estradiol (E2) may permit the development of a molecular targeting strategy for the treatment of metabolic disease. This study examines how the promotion of insulin sensitivity and(More)
The exocytosis of signaling molecules from neuronal, neuroendocrine and endocrine cells is regulated by membrane fusion involving SNAP-25 and associated SNARE proteins. The importance of this process for metabolic control recently became evident by studies of mouse mutants genetically engineered to only express one of 2 closely related,(More)
SNAP-25 is a protein of the core SNARE complex mediating stimulus-dependent release of insulin from pancreatic β cells. The protein exists as two alternatively spliced isoforms, SNAP-25a and SNAP-25b, differing in 9 out of 206 amino acids, yet their specific roles in pancreatic β cells remain unclear. We explored the effect of SNAP-25b-deficiency on(More)
Synaptosomal-associated protein of 25 kDa (SNAP-25) is a key molecule in the soluble N-ethylmaleimide-sensitive factor attachment protein (SNARE) complex mediating fast Ca(2+)-triggered release of hormones and neurotransmitters, and both splice variants, SNAP-25a and SNAP-25b, can participate in this process. Here we explore the hypothesis that minor(More)
  • 1