Learn More
RATIONALE Fibrillation/defibrillation episodes in failing ventricles may be followed by action potential duration (APD) shortening and recurrent spontaneous ventricular fibrillation (SVF). OBJECTIVE We hypothesized that activation of apamin-sensitive small-conductance Ca(2+)-activated K(+) (SK) channels is responsible for the postshock APD shortening in(More)
Avascular necrosis (AVN) of the humeral and femoral heads is a frequent and debilitating complication of sickle cell disease. Some of the risk factors for AVN are alpha-thalassemia and age. Recently, newly discovered thrombophilia mutations have been associated with AVN in patients without sickle cell disease. We studied the frequency of the thermolabile(More)
BACKGROUND We previously reported that IKAS are heterogeneously upregulated in failing rabbit ventricles and play an important role in arrhythmogenesis. This study goal is to test the hypothesis that subtype 2 of the small-conductance Ca(2+) activated K(+) (SK2) channel and apamin-sensitive K(+) currents (IKAS) are upregulated in failing human ventricles.(More)
BACKGROUND Apamin sensitive potassium current (I KAS), carried by the type 2 small conductance Ca(2+)-activated potassium (SK2) channels, plays an important role in post-shock action potential duration (APD) shortening and recurrent spontaneous ventricular fibrillation (VF) in failing ventricles. OBJECTIVE To test the hypothesis that amiodarone inhibits I(More)
BACKGROUND Defects of cytoarchitectural proteins can cause left ventricular noncompaction, which is often associated with conduction system diseases. We have previously identified a p.D117N mutation in the LIM domain-binding protein 3-encoding Z-band alternatively spliced PDZ motif gene (ZASP) in a patient with left ventricular noncompaction and conduction(More)
Since the early 1990s, the concept of primary "inherited" arrhythmia syndromes or ion channelopathies has evolved rapidly as a result of revolutionary progresses made in molecular genetics. Alterations in genes coding for membrane proteins such as ion channels or their associated proteins responsible for the generation of cardiac action potentials (AP) have(More)
BACKGROUND Class IC antiarrhythmic agents may induce acquired forms of Brugada Syndrome. We have identified a novel mutation in SCN5A, the gene that encodes the α-subunit of the human cardiac sodium channel (hNav1.5), in a patient who exhibited Brugada- type ECG changes during pharmacotherapy of atrial arrhythmias. OBJECTIVE To assess whether the novel(More)
  • 1