Isidro Sánchez-García

Learn More
Tumor cell invasion into adjacent normal brain is a mesenchymal feature of GBM and a major factor contributing to their dismal outcomes. Therefore, better understandings of mechanisms that promote mesenchymal change in GBM are of great clinical importance to address invasion. We previously showed that the bHLH transcription factor TWIST1 which orchestrates(More)
Elucidation of the molecular mechanisms that underlie disease development is still a tremendous challenge for basic science, and a prerequisite to the development of new and disease-specific targeted therapies. This review focuses on the function of SNAI2, a member of the Snail family of zinc-finger transcription factors, and discusses its possible role in(More)
The stem cell factor c-kit signaling pathway (SCF/c-kit) has been previously implicated in normal hematopoiesis, melanogenesis, and gametogenesis through the formation and migration of c-kit(+) cells. These biologic functions are also determinants in epithelial-mesenchymal transitions during embryonic development governed by the Snail family of(More)
The characteristic t(12;16)(q13;p11) chromosomal translocation, which leads to gene fusion that encodes the FUS-CHOP chimeric protein, is associated with human liposarcomas. The altered expression of FUS-CHOP has been implicated in a characteristic subgroup of human liposarcomas. We have introduced the FUS-CHOP transgene into the mouse genome in which the(More)
BCR-ABL is a chimeric oncogene generated by translocation of sequences from the chromosomal counterpart (c-ABL gene) on chromosome 9 into the BCR gene on chromosome 22. Alternative chimeric proteins, BCR-ABL(p190) and BCR-ABL(p210), are produced that are characteristic of chronic myelogenous leukemia (CML) and Philadelphia chromosome-positive acute(More)
The zinc-finger transcription factor SLUG (SNAI2) triggers epithelial-mesenchymal transitions (EMTs) and plays an important role in the developmental processes. Here, we show that SLUG is expressed in white adipose tissue (WAT) in humans and its expression is tightly controlled during adipocyte differentiation. Slug-deficient mice exhibit a marked(More)
One major obstacle to the effective treatment of cancer is to distinguish between tumor cells and normal cells. The chimeric molecules created by cancer-associated chromosomal abnormalities are ideal therapeutic targets because they are unique to the disease. We describe the use of a novel approach based on the catalytic RNA subunit of RNase P to destroy(More)
Although the dioxin receptor, the aryl hydrocarbon receptor (AhR), is considered a major regulator of xenobiotic-induced carcinogenesis, its role in tumor formation in the absence of xenobiotics is still largely unknown. Trying to address this question, we have produced immortalized cell lines from wild-type (T-FGM-AhR+/+) and mutant (T-FGM-AhR-/-) mouse(More)
A cancer dogma states that inactivation of oncogene(s) can cause cancer remission, implying that oncogenes are the Achilles' heel of cancers. This current "hands on" model of cancer has kept oncogenes firmly in focus as therapeutic targets and is in agreement with the fact that in human cancers all cancerous cells, with independence of the cellular(More)
BCR-ABL is a chimaeric oncogene generated by translocation of sequences from the c-ABL protein-tyrosine kinase gene on chromosome 9 into the BCR gene on chromosome 22. Alternative chimeric proteins, p210(BCR-ABL) and p190(BCR-ABL), are produced that are characteristic of chronic myelogenous leukemia and acute lymphoblastic leukemia, respectively. Their role(More)