Learn More
BACKGROUND Tumor cell invasion into adjacent normal brain is a mesenchymal feature of GBM and a major factor contributing to their dismal outcomes. Therefore, better understandings of mechanisms that promote mesenchymal change in GBM are of great clinical importance to address invasion. We previously showed that the bHLH transcription factor TWIST1 which(More)
A DNA-binding peptide comprising three zinc-fingers has been engineered to bind specifically to a unique nine-base-pair region of a BCR-ABL fusion oncogene in preference to the parent genomic sequences. Binding to the target oncogene in chromosomal DNA is possible in transformed cells in culture, and results in blockage of transcription. Consequently,(More)
Follicular lymphoma (FL) is incurable with conventional therapies and has a clinical course typified by multiple relapses after therapy. These tumors are genetically characterized by B-cell leukemia/lymphoma 2 (BCL2) translocation and mutation of genes involved in chromatin modification. By analyzing purified tumor cells, we identified additional novel(More)
An important new family of proteins has recently been described that carries a novel cysteine-rich zinc-binding domain called the LIM domain. This protein family is present in mammals, amphibians, flies, worms and plants and its main function is in developmental regulation. Although a role in protein-protein interaction seems likely, intriguing similarities(More)
A translocation involving human chromosome 10, band q24, in a subset of T-cell acute leukemias disrupts a region surrounding the putative oncogene HOX11, which encodes a protein with a homeodomain. The HOX11 protein binds to a specific DNA sequence, it localizes to the cell nucleus, and it transactivates transcription of a reporter gene linked to a(More)
BCR-ABL is a chimeric oncogene generated by translocation of sequences from the chromosomal counterpart (c-ABL gene) on chromosome 9 into the BCR gene on chromosome 22. Alternative chimeric proteins, BCR-ABL(p190) and BCR-ABL(p210), are produced that are characteristic of chronic myelogenous leukemia (CML) and Philadelphia chromosome-positive acute(More)
The most common chromosomal translocation in liposarcomas, t(12;16)(q13;p11), creates the FUS/TLS-CHOP fusion gene. We previously developed a mouse model of liposarcoma by expressing FUS-CHOP in murine mesenchymal stem cells. In order to understand how FUS-CHOP can initiate liposarcoma, we have now generated transgenic mice expressing altered forms of the(More)
Although the dioxin receptor, the aryl hydrocarbon receptor (AhR), is considered a major regulator of xenobiotic-induced carcinogenesis, its role in tumor formation in the absence of xenobiotics is still largely unknown. Trying to address this question, we have produced immortalized cell lines from wild-type (T-FGM-AhR+/+) and mutant (T-FGM-AhR-/-) mouse(More)
The stem cell factor c-kit signaling pathway (SCF/c-kit) has been previously implicated in normal hematopoiesis, melanogenesis, and gametogenesis through the formation and migration of c-kit(+) cells. These biologic functions are also determinants in epithelial-mesenchymal transitions during embryonic development governed by the Snail family of(More)
Chromosomal translocations involving the MALT1 gene are hallmarks of mucosa-associated lymphoid tissue (MALT) lymphoma. To date, targeting these translocations to mouse B cells has failed to reproduce human disease. Here, we induced MALT1 expression in mouse Sca1(+)Lin(-) hematopoietic stem/progenitor cells, which showed NF-κB activation and early lymphoid(More)