Isam Ismail Salem

Learn More
Cyclodextrins and liposomes have been used in recent years as drug delivery vehicles, improving the bioavailability and therapeutic efficacy of many poorly water-soluble drugs. In this study, we used two approaches to enhance the availability of the poorly water-soluble antibiotic, clarithromycin, by inclusion complex formation and by(More)
Encapsulation of certain antibiotics in liposomes can enhance their effect against microorganisms invading cultured cells and in animal models. We describe the incorporation of amikacin, streptomycin, ciprofloxacin, sparfloxacin, and clarithromycin in a variety of liposomes. We delineate the methods used for the evaluation of their efficacy against(More)
Liposomes can be targeted to HIV-infected cells by either reconstituting transmembrane CD4 in the membrane or covalently coupling soluble CD4 to modified lipids. We investigated whether synthetic peptides could be used as ligands for targeting liposomes. A synthetic peptide from the complementarity determining region 2 (CDR-2)-like domain of CD4 could bind(More)
Clofazimine, a water insoluble substituted iminophenazine derivative with anti-mycobacterial and anti-inflammatory activity, is recommended by the WHO for the treatment of leprosy. It is also active against disseminated Mycobacterium avium complex (MAC) disease in HIV-infected patients. Recently, we achieved a 4000-fold increase of clofazimine water(More)
The intracellular activity of certain antiviral agents, including antisense oligonucleotides, acyclic nucleoside phosphonates, and protease inhibitors, is enhanced when they are delivered in liposome-encapsulated form. In this chapter we describe the preparation of pH-sensitive liposomes encapsulating antisense oligonucleotides, ribozymes, and acyclic(More)
  • 1