Learn More
Giant liposomes obtained by electroformation and observed by phase-contrast video microscopy show spontaneous deformations originating from Brownian motion that are characterized, in the case of quasispherical vesicles, by two parameters only, the membrane tension sigma and the bending elasticity k(c). For liposomes containing dimyristoyl(More)
Thermally induced shape fluctuations were used to study elastic properties of giant vesicles composed of archaeal lipids C25,25-archetidyl (glucosyl) inositol and C25,25-archetidylinositol isolated from lyophilised Aeropyrum pernix K1 cells. Giant vesicles were created by electroformation in pure water environment. Stroboscopic illumination using a xenon(More)
We investigate the bending elasticity of lipid membranes with the increase of the alamethicin concentrations in the membrane via analysis of the thermally induced shape fluctuations of quasi-spherical giant vesicles. Our experimental results prove the strong influence of alamethicin molecules on the bending elasticity of diphytanoyl phosphatidylcholine and(More)
The analysis of shape fluctuations of giant nearly spherical lipid vesicles observed via optical microscopy is one of the widely used methods for the determination of the bending elasticity of lipid membranes. Although the method has been used already for three decades, the values of this material constant, obtained by different groups for membranes of the(More)
The static and dynamic behavior of a bilayer containing an additive is examined theoretically. We have proved that the amplitudes of the thermal shape fluctuations of a quasi spherical lipid vesicle depend on the value of the bending elasticity of the vesicle's membrane at free exchange of molecules between its constituent monolayers. The dependence is(More)
The passive water permeability of a lipid vesicle membrane was studied, related to the hydrostatic (not osmotic) pressure difference between the inner and the outer side of the vesicle in a water environment without additives. Each pressure difference was created by sucking a vesicle into a micropipette at a given sucking pressure. The part of the membrane(More)
  • Isak Bivas
  • 2010
It is known that the relaxation of the shape fluctuations of nearly spherical lipid vesicles is accompanied by a lateral displacement of the monolayers, comprising their bilayers. In this work a dissipation mechanism of the mechanical energy stored in the fluctuation is revealed that concerns the viscous friction of the flow in the liquid around the vesicle(More)
The membrane bending stiffness of nearly spherical lipid vesicles can be deduced from the analysis of their thermal shape fluctuations. The theoretical basis of this analysis [Milner and Safran, Phys. Rev. A: At., Mol., Opt. Phys., 1987, 36, 4371-4379] uses the mean field approximation. In this work we apply Monte Carlo simulations and estimate the error in(More)
The bending elasticity modulus of lipid membranes is obtained by applying for the first time, to the best of our knowledge, a novel experimental technique based on digital holographic microscopy. The fluctuations of the radius with time were extracted by tracking and measuring the optical thickness at the vesicle poles. The temporal autocorrelation function(More)