Learn More
Thermally induced shape fluctuations were used to study elastic properties of giant vesicles composed of archaeal lipids C25,25-archetidyl (glucosyl) inositol and C25,25-archetidylinositol isolated from lyophilised Aeropyrum pernix K1 cells. Giant vesicles were created by electroformation in pure water environment. Stroboscopic illumination using a xenon(More)
The passive water permeability of a lipid vesicle membrane was studied, related to the hydrostatic (not osmotic) pressure difference between the inner and the outer side of the vesicle in a water environment without additives. Each pressure difference was created by sucking a vesicle into a micropipette at a given sucking pressure. The part of the membrane(More)
Modeling electric fields and forces around a channel in a planar membrane is still an open problem. Until now, most of the existing theories have oversimplified the electric field distribution by placing the electrode directly at the entry of the channel. However, in any relevant experimental setup the electrodes are placed far away in the electrolyte(More)
  • 1