Isabelle Ventre

Learn More
Biofilm formation by the opportunistic pathogen Pseudomonas aeruginosa requires the expression of a number of surface adhesive components. The expression of surface organelles facilitating biofilm formation is controlled by environmental signals acting through transcriptional regulatory networks. We analysed the expression of a family of P. aeruginosa(More)
The opportunistic pathogen Pseudomonas aeruginosa is responsible for a wide range of acute and chronic infections. The transition to chronic infections is accompanied by physiological changes in the bacteria favoring formation of biofilm communities. Here we report the identification of LadS, a hybrid sensor kinase that controls the reciprocal expression of(More)
The genome of the opportunistic pathogen Pseudomonas aeruginosa encodes over 60 two-component sensor kinases and uses several (including RetS and GacS) to reciprocally regulate the production of virulence factors involved in the development of acute or chronic infections. We demonstrate that RetS modulates the phosphorylation state of GacS by a direct and(More)
Pseudomonas aeruginosa controls the production of many exoproteins and secondary metabolites via a hierarchical quorum sensing (QS) regulatory cascade involving the LuxR-like proteins LasR, RhlR and their cognate signal molecules N-(3-oxododecanoyl)-l-homoserine lactone (3O-C12-HSL) and N-(butanoyl)-l-homoserine lactone (C4-HSL). The finding of a third(More)
Bacterial pathogenesis often depends on regulatory networks, two-component systems and small RNAs (sRNAs). In Pseudomonas aeruginosa, the RetS sensor pathway downregulates expression of two sRNAs, rsmY and rsmZ. Consequently, biofilm and the Type Six Secretion System (T6SS) are repressed, whereas the Type III Secretion System (T3SS) is activated. We show(More)
Pseudomonas aeruginosa is an opportunistic bacterial pathogen which poses a major threat to long-term-hospitalized patients and individuals with cystic fibrosis. The capacity of P. aeruginosa to form biofilms is an important requirement for chronic colonization of human tissues and for persistence in implanted medical devices. Various stages of biofilm(More)
Of considerable interest in the biology of pathogenic bacteria are the mechanisms of intercellular signalling that can lead to the formation of persistent infections. In this article, we have examined the intracellular behaviour of a Pseudomonas aeruginosa quorum sensing regulator RhlR believed to be important in this process. We have further examined the(More)
Pseudomonas aeruginosa is responsible for chronic and acute infections in humans. Chronic infections are associated with production of fimbriae and the formation of a biofilm. The two-component system Roc1 is named after its role in the regulation of cup genes, which encode components of a machinery allowing assembly of fimbriae. A non-characterized gene(More)