Isabelle Pilatte

Learn More
PURPOSE Histone deacetylase (HDAC) inhibitors have shown promising clinical activity in the treatment of hematologic malignancies, but their activity in solid tumor indications has been limited. Most HDAC inhibitors in clinical development only transiently induce histone acetylation in tumor tissue. Here, we sought to identify a "second-generation" class I(More)
Based on the structure of R115777 (tipifarnib, Zarnestra), a series of farnesyltransferase inhibitors have been synthesized by modification of the 2-quinolinone motif and transposition of the 4-chlorophenyl ring to the imidazole or its replacement by 5-membered rings. This has yielded a novel series of potent farnesyltransferase inhibitors.
Replacement of the 1-methylimidazol-5-yl moiety in the farnesyltransferase inhibitor ZARNESTRA series by a 4-methyl-1,2,4-triazol-3-yl group gave us compounds with similar structure-activity relationship profiles showing that this triazole is potentially a good surrogate to imidazole for farnesyltransferase inhibition.
Pursuing our efforts in designing 5-pyrimidylhydroxamic acid anti-cancer agents, we have identified a new series of potent histone deacetylase (HDAC) inhibitors. These compounds exhibit enzymatic HDAC inhibiting properties with IC(50) values in the nanomolar range and inhibit tumor cell proliferation at similar levels. Good solubility, moderate(More)
A series of (4-chlorophenyl)-alpha-(1-methyl-1H-imidazol-5-yl)azoloquinolines and -quinazolines was prepared. These compounds displayed potent Farnesyl Protein Transferase inhibitory activity and tetrazolo[1,5-a]quinazolines are promising agents for oral in vivo inhibition.
  • 1