Learn More
BACKGROUND Synaptic plasticity associated with an important wave of gene transcription and protein synthesis underlies long-term memory processes. Calcium (Ca2+) plays an important role in a variety of neuronal functions and indirect evidence suggests that it may be involved in synaptic plasticity and in the regulation of gene expression correlated to(More)
In amphibian embryos the central nervous system derives from the dorsal region of the ectoderm. Molecular studies led to the formulation of the "neural default model" in which neural development is under the inhibitory control of members of the BMP family. These growth factors also act as epidermis inducers. The neural fate is revealed by factors secreted(More)
We have previously shown that an increase in intracellular Ca2+ is both necessary and sufficient to commit ectoderm to a neural fate in Xenopus embryos. However, the relationship between this Ca2+ increase and the expression of early neural genes has yet to be defined. Using a subtractive cDNA library between untreated and caffeine-treated animal caps,(More)
In vertebrates, the formation of the nervous system starts at gastrulation with a process called neural induction. This process requires, at least in part, the inhibition of BMP signalling in the ectoderm by noggin, as well as FGF receptor activation and Ca2+ signalling. Our studies with Xenopus embryos suggest that an increase in intracellular Ca2+(More)
Development of the vertebrate embryonic nervous system is characterized by a cascade of signalling events. In Xenopus, the initial step in this cascade results from signals emanating from the dorsal mesoderm that divert the fate of the ectoderm from an epidermal to a neural lineage. These signals include extracellular antagonists of the bone morphogenetic(More)
The calcium (Ca(2+)) signaling pathways have crucial roles in development from fertilization through differentiation to organogenesis. In the nervous system, Ca(2+) signals are important regulators for various neuronal functions, including formation and maturation of neuronal circuits and long-term memory. However, Ca(2+) signals are also involved in the(More)
In Xenopus, experiments performed with isolated ectoderm suggest that neural determination is a 'by default' mechanism, which occurs when bone morphogenetic proteins (BMPs) are antagonized by extracellular antagonists, BMP being responsible for the determination of epidermis. However, Ca(2+) imaging of intact Xenopus embryos reveals patterns of Ca(2+)(More)
The precise localization of gene expression within the developing embryo, and how it changes over time, is one of the most important sources of information for elucidating gene function. As a searchable resource, this information has up until now been largely inaccessible to the Xenopus community. Here, we present a new database of Xenopus gene expression(More)
In Xenopus laevis embryos, kidney field specification is dependent on retinoic acid (RA) and coincides with a dramatic increase of Ca(2+) transients, but the role of Ca(2+) signaling in the kidney field is unknown. Here, we identify TRPP2, a member of the transient receptor potential (TRP) superfamily of channel proteins encoded by the pkd2 gene, as a(More)
The calcium (Ca(2+)) signaling pathways have crucial roles in development from fertilization through differentiation to organogenesis. In the nervous system, Ca(2+) signals are important regulators for various neuronal functions, including formation and maturation of neuronal circuits and long-term memory. However, Ca(2+) signals are mainly involved in the(More)