Learn More
Facioscapulohumeral muscular dystrophy (FSHD) is a dominant disease linked to contractions of the D4Z4 repeat array in 4q35. We have previously identified a double homeobox gene (DUX4) within each D4Z4 unit that encodes a transcription factor expressed in FSHD but not control myoblasts. DUX4 and its target genes contribute to the global dysregulation of(More)
Superparamagnetic iron oxide nanoparticles can be used for numerous applications such as MRI contrast enhancement, hyperthermia, detoxification of biological fluids, drug delivery, or cell separation. In this work, we will summarize the chemical routes for synthesis of iron oxide nanoparticles, the fluid stabilization, and the surface modification of(More)
The aim of this study was to determine the value of different magnetic resonance (MR) protocols to assess early tumor response to chemotherapy. We used a murine tumor model (TLT) presenting different degrees of response to three different cytotoxic agents. As shown in survival curves, cyclophosphamide (CP) was the most efficient drug followed by(More)
Carbonic anhydrase (CA) cytoplasmic isozymes CA I and CA II were found in human erythrocyte membrane ghosts, when prepared at pH 5.4 and pH 7.4, but not in ghosts prepared at pH 8.2. These findings could indicate that previously reported CA activity of ghosts was owing to contamination by CA I and CA II during the preparation of the ghosts. However, using a(More)
Small particles of iron oxide (SPIO) and ultrasmall particles of iron oxide (USPIO), inducing a strong negative contrast on T(2) and T(2)*-weighted MR images, are the most commonly used systems for the magnetic labeling of cultured cells and their subsequent detection by magnetic resonance imaging (MRI). The purpose of this work is to study the influence of(More)
The aim of the study was to evaluate the ability of a new MR contrast agent to detect cell death as a biomarker of the efficacy of anti-cancer treatment. The phosphatidylserine-targeted hexapeptide (E3) was coupled to pegylated ultrasmall iron oxide nanoparticles (USPIO) that can be detected by magnetic resonance imaging (MRI) and by electron paramagnetic(More)
Amyloid plaques are the main molecular hallmark of Alzheimer's disease. Specific carriers are needed for molecular imaging and for specific drug delivery. In order to identify new low molecular weight amyloid plaque-specific ligands, the phage display technology was used to design short peptides that bind specifically to amyloid-beta protein, which is the(More)
MRI cell tracking is a promising technique to track various cell types (stem cells, tumor cells, etc.) in living animals. Usually, cells are incubated with iron oxides (T(2) contrast agent) in order to take up the particles before being injected in vivo. Iron oxide quantification is important in such studies for validating the labeling protocols and(More)
PURPOSE Inhibition of carbonic anhydrase (CA) by acetazolamide causes a decrease in the standing potential of the retinal pigment epithelium (RPE) and an increase in the rate of subretinal fluid absorption, and it may improve cystoid macular edema. These effects are thought to be mediated by the RPE. Given the solubility coefficient of acetazolamide, the(More)
Iron oxide (nano)particles are powerful contrast agents for MRI and tags for magnetic cellular labeling. The need for quantitative methods to evaluate the iron content of contrast media solutions and biological matrixes is thus obvious. Several convenient methods aiming at the quantification of iron from iron oxide nanoparticle-containing samples are(More)