Learn More
This paper aims at providing reliable and cost effective genotyping conditions, level of polymorphism in a range of genotypes and map position of newly developed microsatellite markers in order to promote broad application of these markers as a common set for genetic studies in pea. Optimal PCR conditions were determined for 340 microsatellite markers based(More)
The identification of the molecular polymorphisms giving rise to phenotypic trait variability—both quantitative and qualitative—is a major goal of the present agronomic research. Various approaches such as positional cloning or transposon tagging, as well as the candidate gene strategy have been used to discover the genes underlying this variation in(More)
A collection of 148 Pisum accessions, mostly from Western Europe, and including both primitive germplasm and cultivated types, was structured using 121 protein- and PCR-based markers. This molecular marker-based classification allowed us to trace back major lineages of pea breeding in Western Europe over the last decades, and to follow the main breeding(More)
Pea has a complex genome of 4.3 Gb for which only limited genomic resources are available to date. Although SNP markers are now highly valuable for research and modern breeding, only a few are described and used in pea for genetic diversity and linkage analysis. We developed a large resource by cDNA sequencing of 8 genotypes representative of modern(More)
Single Nucleotide Polymorphisms (SNPs) can be used as genetic markers for applications such as genetic diversity studies or genetic mapping. New technologies now allow genotyping hundreds to thousands of SNPs in a single reaction. In order to evaluate the potential of these technologies in pea, we selected a custom 384-SNP set using SNPs discovered in Pisum(More)
Legumes were among the first plant species to be domesticated, and accompanied cereals in expansion of agriculture from the Fertile Crescent into diverse environments across the Mediterranean basin, Europe, Central Asia, and the Indian subcontinent. Although several recent studies have outlined the molecular basis for domestication and eco-geographic(More)
Frost is one of the main climatic stresses which has to be overcome by a winter pea crop. Some forage lines show a delayed floral initiation, which helps them to escape the main winter freezing periods, as a higher susceptibility to frost is observed after floral initiation commences. Frost tolerant forage peas have been used in all winter pea breeding(More)
An understanding of the genetic determinism of frost tolerance is a prerequisite for the development of frost tolerant cultivars for cold northern areas. In legumes, it is not known to which extent vernalization requirement or photoperiod responsiveness are necessary for the development of frost tolerance. In pea (Pisum sativum L.) however, the flowering(More)
Pea (Pisum sativum L.) productivity is linked to its ability to cope with abiotic stresses such as low temperatures during fall and winter. In this study, we investigate the chloroplast-related changes occurring during pea cold acclimation, in order to further lead to genetic improvement of its field performance. Champagne and Térèse, two pea lines with(More)
Pea (Pisum sativum) cell wall metabolism in response to chilling was investigated in a frost-sensitive genotype 'Terese' and a frost-tolerant genotype 'Champagne'. Cell walls isolated from stipules of cold acclimated and non-acclimated plants showed that cold temperatures induce changes in polymers containing xylose, arabinose, galactose and galacturonic(More)