Isabelle Lamrissi-Garcia

Learn More
Human hematopoietic stem cell (HSC) xenotransplantation in NOD/SCID mice requires recipient conditioning, classically achieved by sublethal irradiation. Pretreatment with immunosuppressive and alkylating agents has been reported, but has not been rigorously tested against standard irradiation protocols. Here, we report that treatment of mice with a single(More)
Hematopoietic stem and progenitor cells (HSPCs) are exposed to low levels of oxygen in the bone marrow niche, and hypoxia-inducible factors (HIFs) are the main regulators of cellular responses to oxygen variation. Recent studies using conditional knockout mouse models have unveiled a major role for HIF-1α in the maintenance of murine HSCs; however, the role(More)
Congenital erythropoietic porphyria (CEP) is an inherited disease due to a deficiency in the uroporphyrinogen III synthase (UROS), the fourth enzyme of the heme pathway. It is characterized by accumulation of uroporphyrin I in the bone marrow, peripheral blood, and other organs. The onset of most cases occurs in infancy and the main symptoms are cutaneous(More)
BACKGROUND The autologous transplantation of CD 34+ cells expanded ex vivo in serum-free conditions dramatically reduces post-myeloablative neutropenia in myeloma patients. In our cell therapy unit, cells for this clinical assay have been expanded under GMP with serum-free Irvine Scientific (IS) medium with stem cell factor (SCF),(More)
The JAK2V617F somatic point mutation has been described in patients with myeloproliferative disorders (MPDs). Despite this progress, it remains unknown how a single JAK2 mutation causes 3 different MPD phenotypes, polycythemia vera (PV), essential thrombocythemia, and primitive myelofibrosis (PMF). Using an in vivo xenotransplantation assay in nonobese(More)
Because mobilized peripheral blood (mPB) represents an attractive source of cells for gene therapy, we investigated lentiviral gene transfer in CD34(+) cells and the stem/progenitor-cell-enriched CD34(+)/38(-)/lin(-) cell subset isolated from mPB. In this study, we used an optimized third-generation self-inactivating lentiviral vector containing both the(More)
Congenital erythropoietic porphyria (CEP) is an inherited disease due to a deficiency in the uroporphyrinogen III synthase, the fourth enzyme of the heme biosynthesis pathway. It is characterized by accumulation of uroporphyrin I in the bone marrow, peripheral blood and other organs. The prognosis of CEP is poor, with death often occurring early in adult(More)
BACKGROUND Erythropoietic protoporphyria (EPP) is an inherited disease characterised by a ferrochelatase (FECH) deficiency, the latest enzyme of the heme biosynthetic pathway, leading to the accumulation of toxic protoporphyrin in the liver, bone marrow and spleen. We have previously shown that a successful gene therapy of a murine model of the disease was(More)
We have hypothesised that melanocytes disappear in vitiligo because they are weakly attached to the epidermal basal membrane (melanocytorrhagy). In the epidermis, attachment of melanocytes to collagen IV is mediated through DDR1, which is under the control of CCN3. DDR1 genetic variants have been associated with vitiligo in patients of different ethnic(More)
Achieving long-term expression of a therapeutic gene in a given hematopoietic lineage remains an important goal of gene therapy. Congenital erythropoietic porphyria (CEP) is a severe autosomal-recessive disorder characterized by a deficiency in uroporphyrinogen III synthase (UROS), the fourth enzyme of the heme biosynthetic pathway. We used a recently(More)