Isabelle Chartier

Learn More
Textile-based sensors offer an unobtrusive method of continually monitoring physiological parameters during daily activities. Chemical analysis of body fluids, noninvasively, is a novel and exciting area of personalized wearable healthcare systems. BIOTEX was an EU-funded project that aimed to develop textile sensors to measure physiological parameters and(More)
Under appropriate conditions, in vitro microtubule preparations self-organise over macroscopic distances by a process of reaction and diffusion. To investigate whether such self-organisation can also occur in objects as small as a cell or an embryo we carried out experiments in miniature containers of cellular dimension. When assembled under self-organising(More)
Sorting and recovering specific live cells from samples containing less than a few thousand cells have become major hurdles in rare cell exploration such as stem cell research, cell therapy and cell based diagnostics. We describe here a new technology based on a microelectronic chip integrating an array of over 100,000 independent electrodes and sensors(More)
AIMS To evaluate the current procedures in French general practice of intensifying hypoglycaemic treatment in orally treated type 2 diabetic patients, according to the French recommendations. METHODS Type 2 diabetic patient characteristics, HbA(1c) values, hypoglycaemic treatment and physician characteristics were collected from the electronic records of(More)
Microfluidic networks are patterned in a dry film resist (Ordyl SY300/550) that is sandwiched in between two substrates. The technique enables fabrication of complex biochips with active elements both in the bottom and the top substrate (hybrid chips). The resist can be double bonded at relatively low temperatures without the use of extra adhesives. A(More)