Learn More
Genetic and epigenetic alterations have been identified that lead to transcriptional deregulation in cancers. Genetic mechanisms may affect single genes or regions containing several neighboring genes, as has been shown for DNA copy number changes. It was recently reported that epigenetic suppression of gene expression can also extend to a whole region;(More)
Germinal activating mutations of FGFR3 are responsible for several forms of dwarfism due to the inhibitory effect of FGFR3 on bone growth. Surprisingly, identical somatic activating mutations have been found at the somatic level in tumours: at high frequency in benign epithelial tumours (seborrheic keratosis, urothelial papilloma) and in low-grade,(More)
Heparin affin regulatory peptide (HARP) is an heparin-binding growth factor, highly expressed in several primary human tumors and considered as a rate-limiting angiogenic factor in tumor growth, invasion, and metastasis. Implication of this protein in carcinogenesis is linked to its mitogenic, angiogenic, and transforming activities. Recently, we have(More)
BACKGROUND Epigenetic silencing can extend to whole chromosomal regions in cancer. There have been few genome-wide studies exploring its involvement in tumorigenesis. METHODS We searched for chromosomal regions affected by epigenetic silencing in cancer by using Affymetrix microarrays and real-time quantitative polymerase chain reaction to analyze RNA(More)
The 8p11-12 chromosome region is one of the regions most frequently amplified in breast carcinoma (10-15% of cases). Several genes within this region have been identified as candidate oncogenes, as they are both amplified and overexpressed. However, very few studies have explored the role of these genes in cell transformation, with the aim of identifying(More)
Muscle-invasive bladder carcinoma (MIBC) constitutes a heterogeneous group of tumors with a poor outcome. Molecular stratification of MIBC may identify clinically relevant tumor subgroups and help to provide effective targeted therapies. From seven series of large-scale transcriptomic data (383 tumors), we identified an MIBC subgroup accounting for 23.5% of(More)
Heparin affin regulatory peptide (HARP) is an heparin-binding molecule involved in the regulation of cell proliferation and differentiation. Here, we report that HARP inhibited the biological activity induced by the 165-amino-acid form of vascular endothelial growth factor (VEGF165) on human umbilical vein endothelial cells. Endothelial-cell proliferation(More)
Completion of the working draft of the human genome has made it possible to analyze the expression of genes according to their position on the chromosomes. Here, we used a transcriptome data analysis approach involving for each gene the calculation of the correlation between its expression profile and those of its neighbors. We used the U133 Affymetrix(More)
The Mitogen-Activated Protein Kinase (MAPK) network consists of tightly interconnected signalling pathways involved in diverse cellular processes, such as cell cycle, survival, apoptosis and differentiation. Although several studies reported the involvement of these signalling cascades in cancer deregulations, the precise mechanisms underlying their(More)
HARP (heparin affin regulatory peptide) is a heparin binding growth factor implicated in cellular growth and differentiation. Previously, HARP had been localized in the human mammary, in both alveolar epithelial and myoepithelial cells although HARP mRNAs were only expressed by myoepithelial cells [J. Histochem. Cytochem. 45 (1997) 1]. In the present study,(More)