Isabel de Sá-Nogueira

Learn More
The Bacillus subtilis L-arabinose metabolic genes araA, araB and araD, encoding L-arabinose isomerase, L-ribulokinase and L-ribulose-5-phosphate 4-epimerase, respectively, have been cloned previously and the products of araB and araD were shown to be functionally homologous to their Escherichia coli counterparts by complementation experiments. Here we(More)
The AraR protein is a negative regulator involved in L-arabinose-inducible expression of the Bacillus subtilis araABDLMNPQ-abfA metabolic operon and of the araE/araR genes that are organized as a divergent transcriptional unit. The two ara gene clusters are found at different positions in the bacterial chromosome. AraR was overproduced in Escherichia coli(More)
The taxonomy of the yeast genusMetschnikowia has undergone profound changes over the past century. Major developments, from the capacity to obtain pure cultures of parasitic species to progress associated with the extensive use of molecular biology tools in yeast systematics, are briefly reviewed. Results from past work and new data are combined to evaluate(More)
The Bacillus subtilis araC locus, mapped at about 294 degrees on the genetic map, was defined by mutations conferring an Ara- phenotype to strains bearing the metabolic araA, araB, and araD wild-type alleles (located at about 256 degrees on the genetic map) and by mutants showing constitutive expression of the three genes. In previous work, it has been(More)
To test whether DNA probes derived from ribosomal DNA spacer sequences are suitable for rapid and species-specific yeast identification, a pilot study was undertaken. A 7.7 kb entire ribosomal DNA unit of the type strain of Metschnikowia reukaufii was isolated, cloned and mapped. A 0.65 kb BamHI-HpaI fragment containing non-transcribed spacer sequences was(More)
The Bacillus subtilis araR locus (mapped at about 294 degrees on the genetic map) comprises two open reading frames with divergently arranged promoters, the regulatory gene, araR, encoding a repressor, and a partially cloned gene, termed araE by analogy to the Escherichia coli L-arabinose permease gene. Here, we report the cloning and sequencing of the(More)
A therapeutic deep eutectic system (THEDES) is here defined as a deep eutectic solvent (DES) having an active pharmaceutical ingredient (API) as one of the components. In this work, THEDESs are proposed as enhanced transporters and delivery vehicles for bioactive molecules. THEDESs based on choline chloride (ChCl) or menthol conjugated with three different(More)
Bacillus subtilis is able to utilize arabinopolysaccharides derived from plant biomass. Here, by combining genetic and physiological analyses we characterize the AraNPQ importer and identify primary and secondary transporters of B. subtilis involved in the uptake of arabinosaccharides. We show that the ABC-type importer AraNPQ is involved in the uptake of(More)
Constitutive mutants for L-arabinose utilization were isolated from Bacillus subtilis 168T+ and showed resistance to D-fucose, a nonmetabolizable analog of L-arabinose. The mutations that conferred the constitutive phenotype (Arac) were mapped between cysB and hisA. All the mutants showed an isomerase activity which was reduced to 50 to 70% in the presence(More)
Two recombinant plasmids, pSNL1 and pSNL2, carrying structural genes for L-arabinose utilization were isolated from a Bacillus subtilis gene library. Both plasmids complemented araD mutations in a Rec- B. subtilis strain and in Escherichia coli. Moreover, pSNL1 also complemented araB mutations in both species and efficiently transformed araA Rec+ B.(More)