Learn More
We have tested whether small intraischemic variations in brain temperature influence the outcome of transient ischemia. To measure brain temperature, a thermocouple probe was placed stereotaxically into the left dorsolateral striatum of rats prior to 20 min of four-vessel occlusion. Rectal temperature was maintained at 36-37 degrees C by a heating lamp, and(More)
We have demonstrated previously that mild intraischemic hypothermia confers a marked protective effect on the final histopathological outcome. The present study was carried out to evaluate whether this protective effect involves changes in the degree of local cerebral blood flow reductions, tissue accumulation of free fatty acids, or alterations in the(More)
We have previously described a marked attenuation of postischemic striatal neuronal death by prior substantia nigra (SN) lesioning. The present study was carried out to evaluate whether the protective effect of the lesion involves changes in the degree of local cerebral blood flow (ICBF) reduction, energy metabolite depletion, or alterations in the(More)
We evaluated whether regional differences in the magnitude of glutamate, gamma-aminobutyric acid (GABA), and glycine release could explain why some regions are vulnerable to ischemia whereas others are spared. By means of the microdialysis technique, the temporal profile of ischemia-induced changes in extracellular levels of glutamate, GABA, and glycine was(More)
We have previously described a marked attenuation of postischemic striatal neuronal death by prior substantia nigra (SN) lesion, and have shown that lowering the brain temperature by only a few degrees during ischemia also confers a marked protective effect. The present study was carried out to evaluate whether the protective effect of these manipulations(More)
We studied whether small variations in intraischemic brain temperature influence the response of the blood-brain barrier (BBB) to transient forebrain global ischemia. Six animal subgroups included rats whose brain temperature was maintained at 30, 33, 36 or 39 degrees C during 20 minutes (min) of 4-vessel occlusion. Control rats without ischemia had brain(More)
This study examined regional patterns of increased vascular permeability and morphological indicators of acute neuronal injury following normothermic and mildly hyperthermic forebrain ischemia. Rats underwent 20 min of four-vessel occlusion during which intraischemic brain temperature was maintained at either 37 degrees C or 39 degrees C. At 45-min(More)
We compared the neuropathological consequences of global forebrain ischemia under normothermia versus mild hyperthermia. Twenty-one rats underwent 20 minutes of four-vessel occlusion during which brain temperature was maintained at either 37 degrees C (normothermia, n = 9) or 39 degrees C (hyperthermia, n = 12). Quantitative neuropathological assessment was(More)
Recent studies suggest the norepinephrine (NE) may play a regulatory role in neuronal cell death in the hippocampus after transient ischemia. However, ischemia-induced changes in extracellular NE release have not been demonstrated. In the present study, we utilized the microdialysis technique to measure extracellular NE levels in the hippocampus before,(More)
Excessive release of glutamate is thought to play a major role in the susceptibility of neurons to ischemia. In the present study, we evaluated whether differences in the magnitude of glutamate release resulted in some regions being vulnerable to ischemia, but others being spared from irreversible histopathologic damage. Specifically, we compared the(More)