Isabel Sá-Correia

Learn More
We present the YEAst Search for Transcriptional Regulators And Consensus Tracking (YEASTRACT; www.yeastract.com) database, a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. This database is a repository of 12 346 regulatory associations between transcription factors and target genes, based on experimental evidence(More)
The YEAst Search for Transcriptional Regulators And Consensus Tracking (YEASTRACT) information system (http://www.yeastract.com) was developed to support the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Last updated in June 2010, this database contains over 48,200 regulatory associations between transcription factors (TFs)(More)
The YEASTRACT (http://www.yeastract.com) information system is a tool for the analysis and prediction of transcription regulatory associations in Saccharomyces cerevisiae. Last updated in June 2013, this database contains over 200,000 regulatory associations between transcription factors (TFs) and target genes, including 326 DNA binding sites for 113 TFs.(More)
The Yeast search for transcriptional regulators and consensus tracking (YEASTRACT) information system (www.yeastract.com) was developed to support the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Last updated in September 2007, this database contains over 30 990 regulatory associations between Transcription Factors (TFs)(More)
Weak acids are widely used as food preservatives (e.g., acetic, propionic, benzoic, and sorbic acids), herbicides (e.g., 2,4-dichlorophenoxyacetic acid), and as antimalarial (e.g., artesunic and artemisinic acids), anticancer (e.g., artesunic acid), and immunosuppressive (e.g., mycophenolic acid) drugs, among other possible applications. The understanding(More)
The rapid in vivo activation of Saccharomyces cerevisiae plasma membrane H+-ATPase that has been attributed to medium acidification from pH 6.5 to pH 3.5 is not caused by the low pH itself but is induced by the weak organic acid (succinic) used as the acidulant. The activation induced by 50 mM succinic acid at pH 3.5 occurred in both the presence or absence(More)
BACKGROUND Acetic acid is a byproduct of Saccharomyces cerevisiae alcoholic fermentation. Together with high concentrations of ethanol and other toxic metabolites, acetic acid may contribute to fermentation arrest and reduced ethanol productivity. This weak acid is also a present in lignocellulosic hydrolysates, a highly interesting non-feedstock substrate(More)
The understanding of the molecular mechanisms that may contribute to counteract the deleterious effects of organic acids as fungistatic agents is essential to guide suitable preservation strategies. In this work, we show that the recently identified transcription factor Haa1p is required for a more rapid adaptation of a yeast cell population to several weak(More)
The alterations occurring in yeast genomic expression during early response to acetic acid and the involvement of the transcription factor Haa1p in this transcriptional reprogramming are described in this study. Haa1p was found to regulate, directly or indirectly, the transcription of approximately 80% of the acetic acid-activated genes, suggesting that(More)
To gain insight into the global mechanism underlying phenol toxicity and tolerance in bacteria, we have generated a two-dimensional protein reference map and used it to identify variations in protein expression levels in Pseudomonas putida KT2440 following exposure to sub-lethal inhibitory concentrations of this solvent. Inspection of the two-dimensional(More)