Learn More
Oestrogen protects against AD by multiple mechanisms, including the enhancement of Abeta clearance. Transthyretin (TTR) is a homotetrameric protein mainly synthesized by the liver and choroid plexus (CP) of the brain that sequesters the amyloid beta (Abeta) peptide. In this study we examined the effects of 17beta-estradiol (E2) on TTR protein and mRNA(More)
The choroid plexus (CP) are highly vascularized branched structures that protrude into the ventricles of the brain, and form a unique interface between the blood and the cerebrospinal fluid (CSF), the blood-CSF barrier, that are the main site of production and secretion of CSF. Sex hormones are widely recognized as neuroprotective agents against several(More)
Transthyretin (TTR) is a carrier for thyroid hormones and retinol binding protein. Several mutated forms of TTR cause familial amyloidotic polyneuropathy, an inheritable lethal disease. On the other hand, wild-type TTR has a protective role against Alzheimer’s disease. Despite its overall importance in normal animal physiology and in disease, few studies(More)
Transthyretin (TTR) is a 55 kDa plasma homotetrameric protein mainly synthesized in the liver and choroid plexuses (CPs) of the brain that, functions as a carrier for thyroxin and retinol binding protein. It sequesters amyloid beta (Abeta) peptide, and TTR levels in the cerebrospinal fluid (CSF) appear to be inversely correlated with Alzheimer's disease(More)
The choroid plexus (CP) participates in the synthesis, secretion and regulation of the cerebrospinal fluid, in the removal of its toxic compounds and in the regulation of the availability of essential metal ions to the brain. It expresses and secretes metallothioneins 1/2 (MT-1/2) which are key components in the maintenance of the central nervous system(More)
Depletion of ovarian hormones 17β-estradiol (E2) and progesterone (P) after menopause may contribute to the decline in cognitive performance and increases the risk of Alzheimer's disease (AD) in women, striking the importance of understanding the regulation of pivotal proteins involved in AD pathogenesis by ovarian hormones. Transthyretin (TTR) is now(More)
The choroid plexus (CP) located in brain ventricles, by forming the interface between the blood and the cerebrospinal fluid (CSF) is in a privileged position to monitor the composition of these body fluids. Yet, the mechanisms involved in this surveillance system remain to be identified. The taste transduction pathway senses some types of molecules, thereby(More)
The choroid plexus (CP) epithelium is a unique structure in the brain that forms an interface between the peripheral blood and the cerebrospinal fluid (CSF), which is mostly produced by the CP itself. Because the CP transcriptome is regulated by the sex hormone background, the present study compared gene/protein expression profiles in the CP and CSF from(More)
The choroid plexuses (CPs) of the brain form a unique interface between the peripheral blood and the cerebrospinal fluid (CSF). CPs produce several neuroprotective peptides, which are secreted into the CSF. Despite their importance in neuroprotection, the mechanisms underlying the regulation of most of these peptides in CPs remain unknown. Androgens(More)
The choroid plexuses (CPs) are highly vascularized branched structures that protrude into the ventricles of the brain, and form a unique interface between the blood and the cerebrospinal fluid (CSF). In recent years, novel functions have been attributed to this tissue such as in immune and chemical surveillance of the central nervous system, brain(More)