Isabel Pinto Gonçalves

Learn More
High plasma levels of VLDL are associated with increased risk for atherosclerosis. Here we show that VLDL (75 to 150 microg/mL) activates nuclear factor-kappaB (NF-kappaB), a transcription factor known to play a key role in regulation of inflammation. Oxidation of VLDL reduced its capacity to activate NF-kappaB in vitro, whereas free fatty acids such as(More)
Transthyretin (TTR) is a 55 kDa plasma homotetrameric protein mainly synthesized in the liver and choroid plexuses (CPs) of the brain that, functions as a carrier for thyroxin and retinol binding protein. It sequesters amyloid beta (Abeta) peptide, and TTR levels in the cerebrospinal fluid (CSF) appear to be inversely correlated with Alzheimer's disease(More)
OBJECTIVE To determine whether the level of lysophosphatidylcholine (lysoPC) generated by lipoprotein-associated phospholipase A2 (Lp-PLA2) is associated with severity of inflammation in human atherosclerotic plaques. Elevated plasma Lp-PLA2 is associated with increased cardiovascular risk. Lp-PLA2 inhibition reduces atherosclerosis. Lp-PLA2 hydrolyzes(More)
BACKGROUND AND PURPOSE Echolucent carotid plaques have been associated with increased risk for stroke. Histological studies suggested that echolucent plaques are hemorrhage- and lipid-rich, whereas echogenic plaques are characterized by fibrosis and calcification. This is the first study to relate echogenicity to plaque composition analyzed biochemically.(More)
Transthyretin (TTR), an amyloid-beta (Abeta) scavenger protein, and metallothioneins 2 and 3 (MT2 and MT3), low molecular weight metal-binding proteins, have recognized impacts in Abeta metabolism. Because TTR binds MT2, an ubiquitous isoform of the MTs, we investigated whether it also interacts with MT3, an isoform of the MTs predominantly expressed in the(More)
Metallothioneins (MTs) are low-molecular weight cysteine- and metal-rich proteins with unquestionable metal binding capacity, antioxidant and anti-inflammatory properties, and a clear involvement in diverse physiological actions as inhibition of proapoptotic mechanisms, enhancement of cell survival, and tissue regeneration. Concurrent with this wide array(More)
Plasminogen activator inhibitor-1 (PAI-1) functions as an important regulator of fibrinolysis by inhibiting both tissue-type and urokinase-type plasminogen activator. PAI-1 is produced by smooth muscle cells (SMCs) in atherosclerotic arteries, but the mechanisms responsible for induction of PAI-1 in SMCs are less well understood. In cultured human aortic(More)
BACKGROUND Epigenetic alterations may contribute to the development of atherosclerosis. In particular, DNA methylation, a reversible and highly regulated DNA modification, could influence disease onset and progression because it functions as an effector for environmental influences, including diet and lifestyle, both of which are risk factors for(More)
BACKGROUND There is a need to develop and validate surrogate markers of cardiovascular disease (CVD) in subjects with diabetes. The macrovascular changes associated with diabetes include aggravated atherosclerosis, increased arterial stiffness and endothelial dysfunction. The aim of this study was to determine which of these factors is most strongly(More)
RATIONALE Atherosclerotic plaques that give rise to acute clinical symptoms are typically characterized by degradation of the connective tissue and plaque rupture. Experimental studies have shown that mechanisms to repair vulnerable lesions exist, but the rate of remodeling of human plaque tissue has not been studied. OBJECTIVE In the present study, we(More)