Isaac Pérez Castillo

Learn More
Understanding the organization of reaction fluxes in cellular metabolism from the stoichiometry and the topology of the underlying biochemical network is a central issue in systems biology. In this task, it is important to devise reasonable approximation schemes that rely on the stoichiometric data only, because full-scale kinetic approaches are(More)
Weighted scale-free networks with topology-dependent interactions are studied. It is shown that the possible universality classes of critical behavior, which are known to depend on topology, can also be explored by tuning the form of the interactions at fixed topology. For a model of opinion formation, simple mean field and scaling arguments show that a(More)
We study the dynamics of macroscopic observables such as the magnetization and the energy per degree of freedom in Ising spin models on random graphs of finite connectivity, with random bonds and/or heterogeneous degree distributions. To do so, we generalize existing versions of dynamical replica theory and cavity field techniques to systems with strongly(More)
Quite generally, constraint-based metabolic flux analysis describes the space of viable flux configurations for a metabolic network as a high-dimensional polytope defined by the linear constraints that enforce the balancing of production and consumption fluxes for each chemical species in the system. In some cases, the complexity of the solution space can(More)
Scale-free networks with topology-dependent interactions are studied. It is shown that the universality classes of critical behavior, which conventionally depend only on topology, can also be explored by tuning the interactions. A mapping, gamma'=(gamma-mu)/(1-mu), describes how a shift of the standard exponent gamma of the degree distribution P(q) can(More)
We consider the large deviations of the smallest eigenvalue of the Wishart-Laguerre Ensemble. Using the Coulomb gas picture we obtain rate functions for the large fluctuations to the left and the right of the hard edge. Our results are compared with known exact results for β=1 finding good agreement. We also consider the case of almost square matrices(More)
A Blume-Emery-Griffiths perceptron model is introduced and its optimal capacity is calculated within the replica-symmetric Gardner approach, as a function of the pattern activity and the embedding stability parameter. The stability of the replica-symmetric approximation is studied via the analog of the de Almeida-Thouless line. A comparison is made with(More)
Random number generation plays an essential role in technology with important applications in areas ranging from cryptography to Monte Carlo methods, and other probabilistic algorithms. All such applications require high-quality sources of random numbers, yet effective methods for assessing whether a source produce truly random sequences are still missing.(More)
We present a general method to obtain the exact rate function Ψ_{[a,b]}(k) controlling the large deviation probability Prob[I_{N}[a,b]=kN]≍e^{-NΨ_{[a,b]}(k)} that an N×N sparse random matrix has I_{N}[a,b]=kN eigenvalues inside the interval [a,b]. The method is applied to study the eigenvalue statistics in two distinct examples: (i) the shifted index number(More)
We compute the full order statistics of a one-dimensional gas of spinless fermions (or, equivalently, hard bosons) in a harmonic trap at zero temperature, including its large deviation tails. The problem amounts to computing the probability distribution of the kth smallest eigenvalue λ(k) of a large dimensional Gaussian random matrix. We find that this(More)
  • 1