Learn More
The climate feedbacks in coupled ocean–atmosphere models are compared using a coordinated set of twenty-first-century climate change experiments. Water vapor is found to provide the largest positive feedback in all models and its strength is consistent with that expected from constant relative humidity changes in the water vapor mixing ratio. The feedbacks(More)
The scaling argument developed by Larichev and Held (1995) for eddy amplitudes and fluxes in a horizontally homogeneous, two-layer model on an f-plane is extended to a β-plane. In terms of the non-dimensional number ξ = U/(βλ 2), where λ is the deformation radius and U is the mean thermal wind, the result for the RMS eddy velocity V , the characteristic(More)
How anthropogenic climate change will affect hydroclimate in the arid regions of southwestern North America has implications for the allocation of water resources and the course of regional development. Here we show that there is a broad consensus among climate models that this region will dry in the 21st century and that the transition to a more arid(More)
Since the mid-nineteenth century the Earth's surface has warmed, and models indicate that human activities have caused part of the warming by altering the radiative balance of the atmosphere. Simple theories suggest that global warming will reduce the strength of the mean tropical atmospheric circulation. An important aspect of this tropical circulation is(More)
s Abstract Water vapor is the dominant greenhouse gas, the most important gaseous source of infrared opacity in the atmosphere. As the concentrations of other greenhouse gases, particularly carbon dioxide, increase because of human activity, it is centrally important to predict how the water vapor distribution will be affected. To the extent that water(More)
Several recent models suggest that the frequency of Atlantic tropical cyclones could decrease as the climate warms. However, these models are unable to reproduce storms of category 3 or higher intensity. We explored the influence of future global warming on Atlantic hurricanes with a downscaling strategy by using an operational hurricane-prediction model(More)
  • A M Treguier, I M Held, V D Larichev
  • 1997
A parameterization of mesoscale eddy fluxes in the ocean should be consistent with the fact that the ocean interior is nearly adiabatic. Gent and McWilliams have described a framework in which this can be approximated in z-coordinate primitive equation models by incorporating the effects of eddies on the buoyancy field through an eddy-induced velocity. It(More)
1 ABSTRACT The fast and slow components of global warming in a comprehensive climate model are isolated by examining the response to an instantaneous return to pre-industrial forcing. The response is characterized by an initial fast exponential decay with an e-folding time smaller than 5 years, leaving behind a remnant that evolves more slowly. The slow(More)
The response of the Southern Hemisphere (SH), extratropical, atmospheric general circulation to transient, anthropogenic, greenhouse warming is investigated in a coupled climate model. The extratropical circulation response consists of a SH summer half-year poleward shift of the westerly jet and a year-round positive wind anomaly in the stratosphere and the(More)