Isaac Jardin

Learn More
STIM1 and Orai1 represent the two molecular key components of the Ca(2+) release-activated Ca(2+) channels. Their activation involves STIM1 C terminus coupling to both the N terminus and the C terminus of Orai. Here we focused on the extended transmembrane Orai1 N-terminal (ETON, aa73-90) region, conserved among the Orai family forming an elongated helix of(More)
Homocysteine, a sulphur-containing amino acid derived from methionine, has been presented as an independent risk factor for cardiovascular disorders, including atherosclerosis and thrombogenesis. The mechanisms underlying homocysteine-induced effects have been intensively investigated over the last two decades. Homocysteine can induce oxidative stress(More)
Orai1 and hTRPC1 have been presented as essential components of store-operated channels mediating highly Ca(2+) selective I(CRAC) and relatively Ca(2+) selective I(SOC), respectively. STIM1 has been proposed to communicate the Ca(2+) content of the intracellular Ca(2+) stores to the plasma membrane store-operated Ca(2+) channels. Here we present evidence(More)
Homer is a family of cytoplasmic adaptor proteins that play different roles in cell function, including the regulation of G-protein-coupled receptors. These proteins contain an Ena (Enabled)/VASP (vasodilator-stimulated phosphoprotein) homology 1 domain that binds to the PPXXF sequence motif, which is present in different Ca²⁺-handling proteins such as IP3(More)
There is a body of evidence suggesting that Ca(2+) handling proteins assemble into signaling complexes required for a fine regulation of Ca(2+) signals, events that regulate a variety of critical cellular processes. Canonical transient receptor potential (TRPC) and Orai proteins have both been proposed to form Ca(2+)-permeable channels mediating Ca(2+)(More)
Ca(2+) influx via store-operated Ca(2+) release activated Ca(2+) (CRAC) channels represents a main signalling pathway for a variety of cell functions, including T-cell activation as well as mast-cell degranulation. Depletion of [Ca(2+)]ER results in activation of Ca(2+) channels within the plasmamembrane that mediate sustained Ca(2+) influx which is(More)
Two separate Ca2+ stores have been reported in human platelets: the dense tubular system (DTS) and lysosome-like acidic organelles. Recent work has reported that Ca2+ release from the DTS is mediated by the generation of inositol 1,4,5-trisphosphate, whereas Ca2+ efflux from the acidic stores is mostly linked to nicotinic acid adenine dinucleotide(More)
Store-operated Ca(2+) entry (SOCE) is a major mechanism for Ca(2+) influx in platelets and other cells activated by a reduction in Ca(2+) concentration in the intracellular stores. SOCE has been reported to be regulated by extracellular Ca(2+), although the underlying mechanism remains unclear. Here we have examined the involvement of plasma(More)
Cytosolic Ca2+ mobilization, especially Ca2+ entry, is enhanced in platelets from type 2 diabetic individuals, which might result in platelet hyperaggregability. In the present study, we report an increased oxidant production in resting and stimulated platelets from diabetic donors. Pretreatment of platelets with catalase or trolox, an analog of vitamin E,(More)
Intracellular Ca2+ homeostasis in platelets of patients with non-insulin-dependent diabetes mellitus (NIDDM) has been reported to be altered, leading to an increased adhesiveness and spontaneous aggregation. Among the disturbed Ca2+ mechanism in platelets from NIDDM subjects, a reduced Ca2+ extrusion by the plasma membrane Ca2+-ATPase (PMCA) is especially(More)