Isaac F Federiuk

Learn More
Uncertainties have existed regarding the systematic induction and management of drug-induced diabetes mellitus (DM). Issues have included the optimal route of administration of the drug, methods of reducing drug toxicosis and mortality, how to induce type-1 versus type-2 DM, and how to manage labile DM in rats. In attempting to induce type-1 DM in(More)
Foreign body encapsulation represents a chronic fibrotic response and has been a major obstacle that reduces the useful life of implanted biomedical devices. The precise mechanism underlying such an encapsulation is still unknown. We hypothesized that, considering its central role in many other fibrotic conditions, transforming growth factor beta (TGFbeta)(More)
An algorithm designed to automatically control insulin delivery was tested in rats with Type 1 diabetes. This nonlinear algorithm included a fading memory component of proportional and derivative errors in order to simulate normal insulin secretion. Error-weighting functions for the proportional and derivative terms were used with a performance index(More)
The purpose of this study was to better understand whether interleukin-13 (IL-13) and connective tissue growth factor (CTGF) are highly expressed during foreign body encapsulation of subcutaneous devices. Mock biosensors were implanted into rats for three lengths of time (7-, 21- and 48-55 days) to address different stages of the foreign body response.(More)
The foreign body capsule that forms around implanted devices such as glucose sensors is hypovascular and has limited permeability to glucose. Such a capsule may function better if well vascularized. We hypothesized that capsular vascularization achieved by local release of vascular endothelial growth factor (VEGF) would lead to enhanced function.(More)
Although continuous electrochemical glucose monitoring holds promise in the management of diabetes, its utility is limited in part because of error of unclear origin. The use of redundant glucose sensors in an array might reduce such error. We hypothesized that in a subcutaneously implanted array, a median-based continuous computation that excludes outlying(More)
A closed loop system of diabetes control would minimize hyperglycemia and hypoglycemia. We therefore implanted and tested a subcutaneous amperometric glucose sensor array in alloxan-diabetic rats. Each array employed four sensing units, the outputs of which were processed in real time to yield a unified signal. We utilized a gain-scheduled insulin control(More)
  • 1