Irwin Feinberg

Learn More
Converging evidence indicates that a profound reorganization of human brain function takes place during adolescence: the amount of deep sleep and the rate of brain metabolism fall sharply; the latency of certain event-related potentials declines; the capacity to recover function after brain injury diminishes; and adult problem-solving "power" appears. A(More)
Many motor commands in the nervous system are associated with corollary discharges which alter the excitability in both sensory and motor systems. These discharges may assist in the distinction between self-generated and externally produced movements; they also allow (or represent) monitoring of the motor commands before the effector response has occurred.(More)
It is now recognized that extensive maturational changes take place in the human brain during adolescence, and that the trajectories of these changes are best studied longitudinally. We report the first longitudinal study of the adolescent decline in non-rapid eye movement (NREM) delta (1-4 Hz) and theta (4-8 Hz) EEG. Delta and theta are the homeostatic(More)
Delta (1-4 Hz) EEG power in non-rapid eye movement (NREM) sleep declines massively during adolescence. This observation stimulated the hypothesis that during adolescence the human brain undergoes an extensive reorganization driven by synaptic elimination. The parallel declines in synaptic density, delta wave amplitude and cortical metabolic rate during(More)
The highly selective metabotropic glutamate (mGlu)2/3 receptor agonist LY379268 [(-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate] completely suppresses rapid eye movement (REM) sleep and strongly depresses theta (6-10 Hz) and high-frequency (10-60 Hz) power in the waking and nonrapid eye movement (NREM) EEG, effects consistent with depressed brain(More)
Sleep EEG in the sigma and delta frequency bands was subjected to spectral analysis in 8 normal young adults. In each subject, power density of sigma and delta oscillated reciprocally during NREM sleep, confirming an observation made initially with period/amplitude analysis. In REM sleep, power density for both frequency bands was at its lowest levels.(More)
Electroencephalographic readings and eye movement were recorded in experienced marijuana users under placebo and tetrahydrocannabinol (THC). Four subjects were studied for 3 baseline nights, 3 nights under initial dosage of 70 mg/day, the last 3 nights of a 2-wk period of 210 mg/day, and the first 3 nights of withdrawal. Three other subjects were studied(More)
We analyzed the available ontogenetic data (birth to 30 years of age) for: amplitude of delta EEG (DA) waves during sleep; cortical metabolic rate (CMR) measured with positron emission tomography; and synaptic density (SD) in frontal cortex. Each is at the adult level at birth, increases to about twice this level by 3 years of age, and then gradually falls(More)
STUDY OBJECTIVES Our ongoing longitudinal study has shown that NREM delta (1-4 Hz) and theta (4-8 Hz) power measured at C3 and C4 decrease by more than 60% between ages 11 and 17 years. Here, we investigate the age trajectories of delta and theta power at frontal, central, and occipital electrodes. DESIGN Baseline sleep EEG was recorded twice yearly for 6(More)