Iris Mironi-Harpaz

Learn More
Hydrogels are of great interest as a class of materials for tissue engineering, axonal regeneration, and controlled drug delivery, as they offer 3D interwoven scaffolds to support the growth of cells. Herein, we extend the family of the aromatic Fmoc-dipeptides with a library of new Fmoc-peptides, which include natural and synthetic amino acids with an(More)
Biocompatible hydrogels are of high interest as a class of biomaterials for tissue engineering, regenerative medicine, and controlled drug delivery. These materials offer three-dimensional scaffolds to support the growth of cells and development of hierarchical tissue structures. Fmoc-peptides were previously demonstrated as attractive building blocks for(More)
Cell-encapsulating hydrogels used in regenerative medicine are designed to undergo a rapid liquid-to-solid phase transition in the presence of cells and tissues so as to maximize crosslinking and minimize cell toxicity. Light-activated free-radical crosslinking (photopolymerization) is of particular interest in this regard because it can provide rapid(More)
The noncoded aromatic 3,4-dihydroxy-L-phenylalanine (DOPA) amino acid has a pivotal role in the remarkable adhesive properties displayed by marine mussels. These properties have inspired the design of adhesive chemical entities through various synthetic approaches. DOPA-containing bioinspired polymers have a broad functional appeal beyond adhesion due to(More)
Copolymer chains consisting of acrylamide units and guanine (G)-containing oligonucleotide-tethered acrylamide units undergo, in the presence of K(+) ions, cross-linking by G-quadruplexes to yield a hydrogel. The hydrogel is dissociated upon addition of 18-crown-6 ether that traps the K(+) ions. Reversible formation and dissociation of the hydrogel is(More)
INTRODUCTION The liver is the natural microenvironment for hepatocytes transplantation but unfortunately engraftment efficiency is low. Cell-laden microhydrogels made of fibrinogen attached to poly(ethylene glycol) (PEG)-diacrylate side chains, were used as a cell carrier, for intravascular transplantation. This approach may reduce shear stress and(More)
Mesenchymal stromal cells residing in proteolytically responsive hydrogel scaffolds were subjected to changes in mechanical properties associated with their own three-dimensional (3-D) morphogenesis. In order to investigate this relationship the current study documents the transient degradation and restructuring of fibroblasts seeded in hydrogel scaffolds(More)
DNA hydrogels, consisting of Y-shaped nucleic acid subunits or of nucleic acid-functionalized acrylamide chains, undergo switchable gel-to-solution transitions. The Ag(+)-stimulated formation of cytosine-Ag(+)-cytosine complexes results in the crosslinking of the units to yield the hydrogels, while the cysteamine-induced elimination of the Ag(+) ions(More)