Irini Manoli

Learn More
The exquisitely orchestrated adaptive response to stressors that challenge the homeostasis of the cell and organism involves important changes in mitochondrial function. A complex signaling network enables mitochondria to sense internal milieu or environmental changes and to adjust their bioenergetic, thermogenic, oxidative and/or apoptotic responses(More)
Mutations in the key enzyme of sialic acid biosynthesis, uridine diphospho-N-acetylglucosamine 2-epimerase/N-acetylmannosamine (ManNAc) kinase (GNE/MNK), result in hereditary inclusion body myopathy (HIBM), an adult-onset, progressive neuromuscular disorder. We created knockin mice harboring the M712T Gne/Mnk mutation. Homozygous mutant (Gne(M712T/M712T))(More)
We used exome sequencing to identify the genetic basis of combined malonic and methylmalonic aciduria (CMAMMA). We sequenced the exome of an individual with CMAMMA and followed up with sequencing of eight additional affected individuals (cases). This included one individual who was identified and diagnosed by searching an exome database. We identify(More)
OBJECTIVE Methylmalonic acidemia (MMA) is a metabolic disorder with a poorly defined long-term neurocognitive phenotype. We studied the neuropsychological outcomes of patients and examined clinical covariates that influenced cognition. METHODS A diverse cohort with mut, cblA, or cblB subtypes of isolated MMA (N = 43), ages 2 to 32 years, were evaluated at(More)
Extracellular hyperosmolarity, or osmotic stress, generally caused by differences in salt and macromolecule concentrations across the plasma membrane, occurs in lymphoid organs and at inflammatory sites. The response of immune cells to osmotic stress is regulated by nuclear factor of activated T cells 5 (NFAT5), a transcription factor that induces the(More)
Isolated methylmalonic acidemia (MMA), caused by deficiency of the mitochondrial enzyme methylmalonyl-CoA mutase (MUT), is often complicated by end stage renal disease that is resistant to conventional therapies, including liver transplantation. To establish a viable model of MMA renal disease, Mut was expressed in the liver of Mut(-/-) mice as a stable(More)
The human glucocorticoid receptor (GR) gene produces C-terminal GRbeta and GRalpha isoforms through alternative use of specific exons 9beta and alpha, respectively. We explored the transcriptional activity of GRbeta on endogenous genes by developing HeLa cells stably expressing EGFP-GRbeta or EGFP. Microarray analyses revealed that GRbeta had intrinsic(More)
Skeletal myopathy is a common complication of endogenous and exogenous glucocorticoid excess, yet its pathogenetic mechanisms remain unclear. There is accumulating evidence that mitochondrial dysfunction and oxidative stress are involved in this process. To explore the glucocorticoid-induced transcriptional adaptations that may affect mitochondrial function(More)
Glucocorticoids regulate many crucial biologic functions through their cytoplasmic/nuclear glucocorticoid receptors (GR). Excess, deficiency, or alteration in tissue sensitivity to glucocorticoids has been associated with major causes of human morbidity and mortality. Brx, a cytoplasmic Rho family guanine nucleotide exchange factor, binds to and influences(More)
To facilitate profiling mitochondrial transcriptomes, we developed a third-generation human mitochondria-focused cDNA microarray (hMitChip3) and its bioinformatic tools. hMitChip3 consists of the 37 mitochondrial DNA-encoded genes, 1098 nuclear DNA-encoded and mitochondria-related genes, and 225 controls, each in triplicate. The bioinformatic tools included(More)