Learn More
Horizontal gene transfer in metazoans has been documented in only a few species and is usually associated with endosymbiosis or parasitism. By contrast, in bdelloid rotifers we found many genes that appear to have originated in bacteria, fungi, and plants, concentrated in telomeric regions along with diverse mobile genetic elements. Bdelloid proximal(More)
We report that two structurally similar transposable elements containing reverse transcriptase (RT), Penelope in Drosophila virilis and Athena in bdelloid rotifers, have proliferated as copies containing introns. The ability of Penelope-like elements (PLEs) to retain introns, their separate phylogenetic placement and their peculiar structural features make(More)
HeT-A elements are non-long terminal repeat (non-LTR) retrotransposons found in head-to-tail arrays on Drosophila chromosome ends, where they form telomeres. We report that HeT-A promoter activity is located in the 3' end of the element, unlike the 5' location seen for other non-LTR retrotransposons. In HeT-A arrays the 3' sequence of one element directs(More)
Sexual reproduction allows deleterious transposable elements to proliferate in populations, whereas the loss of sex, by preventing their spread, has been predicted eventually to result in a population free of such elements [Hickey, D. A. (1982) Genetics 101, 519-531]. We tested this expectation by screening representatives of a majority of animal phyla for(More)
Here we describe a new class of retroelements termed PLE (Penelope-like elements). The only transpositionally active representative of this lineage found so far has been isolated from Drosophila virilis. This element, Penelope, is responsible for the hybrid dysgenesis syndrome in this species, characterized by simultaneous mobilization of several unrelated(More)
Penelope-like elements (PLEs) are a relatively little studied class of eukaryotic retroelements, distinguished by the presence of the GIY-YIG endonuclease domain, the ability of some representatives to retain introns, and the similarity of PLE-encoded reverse transcriptases to telomerases. Although these retrotransposons are abundant in many animal genomes,(More)
The evolutionary origin of telomerases, enzymes that maintain the ends of linear chromosomes in most eukaryotes, is a subject of debate. Penelope-like elements (PLEs) are a recently described class of eukaryotic retroelements characterized by a GIY-YIG endonuclease domain and by a reverse transcriptase domain with similarity to telomerases and group II(More)
Loss of sexual reproduction is considered an evolutionary dead end for metazoans, but bdelloid rotifers challenge this view as they appear to have persisted asexually for millions of years. Neither male sex organs nor meiosis have ever been observed in these microscopic animals: oocytes are formed through mitotic divisions, with no reduction of chromosome(More)
The structural organization of the retrotransposon gypsy (mdg4) is investigated in two Drosophila melanogaster strains. One of them, the stable w strain (SS), is characterized by a small copy number and stable localization of gypsy. In the other, unstable mutator strain (MS) which is derived from SS, the gypsy copy number and the frequency of its(More)
Penelope-like elements are a class of retroelement that have now been identified in >50 species belonging to at least 10 animal phyla. The Penelope element isolated from Drosophila virilis is the only transpositionally active representative of this class isolated so far. The single ORF of Penelope and its relatives contains regions homologous to a reverse(More)