Learn More
The water channels, aquaporins (AQPs) are key mediators of transcellular fluid transport. However, their expression and role in cardiac tissue is poorly characterized. Particularly, AQP1 was suggested to transport other molecules (nitric oxide (NO), hydrogen peroxide (H2O2)) with potential major bearing on cardiovascular physiology. We therefore examined(More)
AIMS In endothelial cells, caveolin-1 (cav-1) is known to negatively modulate the activation of endothelial nitric oxide synthase, a key regulator of blood pressure (BP). However, the impact of genetic alteration of cav-1 on vascular nitric oxide (NO) production and BP homeostasis in vivo is unknown. METHODS AND RESULTS We used spectral analysis of(More)
BACKGROUND β1-2-adrenergic receptors (AR) are key regulators of cardiac contractility and remodeling in response to catecholamines. β3-AR expression is enhanced in diseased human myocardium, but its impact on remodeling is unknown. METHODS AND RESULTS Mice with cardiac myocyte-specific expression of human β3-AR (β3-TG) and wild-type (WT) littermates were(More)
S-Nitrosation of cysteine residues plays an important role in nitric oxide (NO) signaling and transport. The aim of the present study was to investigate the role of S-nitrosothiols as a storage form of NO, which may account for the long-lasting effects in the vasculature. Rat aorta exposed to S-nitrosoglutathione (GSNO) displayed, even after washout of the(More)
The ability of various nitric oxide (NO) donors to induce long-lasting inhibition of contraction in isolated arteries was compared. All the studied compounds elicited a relaxant effect in rat aortic rings precontracted with norepinephrine (NE). Almost maximal relaxation was obtained with 1 microM of each compound. The S-nitrosating agents(More)
The biological status of nitrite recently evolved from an inactive end product of nitric oxide (NO) metabolism to a major intravascular and tissue storage of NO. Several enzymes and proteins may indeed work as nitrite reductases. The endothelial NO synthase (eNOS) is proposed to be one of them, particularly when oxygen is lacking. Here, we examined whether(More)
UNLABELLED Impaired nitric oxide (NO)-dependent endothelial function is associated with the development of cardiovascular diseases. We hypothesized that erythrocyte levels of nitrosylated hemoglobin (HbNO-heme) may reflect vascular endothelial function in vivo. We developed a modified subtraction method using Electron Paramagnetic Resonance (EPR)(More)
Endothelial dysfunction is considered to be an early event in atherosclerosis and plays a pivotal role in the development, progression and clinical complications of atherosclerosis. Previous studies have shown the beneficial effects of combined inhibition of thromboxane synthase and antagonism of thromboxane receptors by BM-573 on atherosclerosis; however(More)
H emodynamic overload and ischemic or oxidative stress promote adverse cardiac remodeling, a leading cause of worsening heart failure. Most of these pathophysiologic conditions are associated with (and to a certain extent, mediated by) adrenergic stimulation and catecholamines release, resulting in adrenoceptor (AR) activation on different cell types within(More)
Nitric Oxide (NO) and Reactive oxygen species (ROS) are endogenous regulators of angiogenesis-related events as endothelial cell proliferation and survival, but NO/ROS defect or unbalance contribute to cancers. We recently designed a novel photoactive inhibitor of NO-Synthases (NOS) called NS1, which binds their NADPH site in vitro. Here, we show that NS1(More)
  • 1