Learn More
We report a novel signal transduction complex of the angiotensin receptor type 1. In this complex the angiotensin receptor type 1 associates with the potassium channel alpha-subunit Kv4.3 and regulates its intracellular distribution and gating properties. Co-localization of Kv4.3 with angiotensin receptor type 1 and fluorescent resonance energy transfer(More)
The purpose of this study was to determine whether oligonucleotides the size of siRNA are permeable to gap junctions and whether a specific siRNA for DNA polymerase beta (pol beta) can move from one cell to another via gap junctions, thus allowing one cell to inhibit gene expression in another cell directly. To test this hypothesis, fluorescently labelled(More)
We tested the ability of human mesenchymal stem cells (hMSCs) to deliver a biological pacemaker to the heart. hMSCs transfected with a cardiac pacemaker gene, mHCN2, by electroporation expressed high levels of Cs+-sensitive current (31.1+/-3.8 pA/pF at -150 mV) activating in the diastolic potential range with reversal potential of -37.5+/-1.0 mV, confirming(More)
MinK-related protein (MiRP1 or KCNE2) interacts with the hyperpolarization-activated, cyclic nucleotide-gated (HCN) family of pacemaker channels to alter channel gating in heterologous expression systems. Given the high expression levels of MiRP1 and HCN subunits in the cardiac sinoatrial node and the contribution of pacemaker channel function to impulse(More)
Human mesenchymal stem cells (hMSCs) are a multipotent cell population with the potential to be a cellular repair or delivery system provided that they communicate with target cells such as cardiac myocytes via gap junctions. Immunostaining revealed typical punctate staining for Cx43 and Cx40 along regions of intimate cell-to-cell contact between hMSCs. The(More)
Stem cells show promise for repair of damaged cardiac tissue. Little is known with certainty, however, about the distribution of these cells once introduced in vivo. Previous attempts at tracking delivered stem cells have been hampered by the autofluorescence of host tissue and limitations of existing labeling techniques. We have developed a novel loading(More)
The HCN family of ion channel subunits underlies the currents I(f) in heart and I(h) and I(q) in the nervous system. In the present study, we demonstrate that minK-related peptide 1 (MiRP1) is a beta subunit for the HCN family. As such, it enhances protein and current expression as well as accelerating the kinetics of activation. Because MiRP1 also(More)
We investigated effects of the paracrine factors secreted by human mesenchymal stem cells (hMSCs) on endothelial cell migration, extracellular matrix invasion, proliferation, and survival in vitro. Human mesenchymal stem cells were cultured as a monolayer or as three-dimensional aggregates in hanging drops (hMSC spheroids). We performed analysis of(More)
BACKGROUND Biological pacemakers (BPM) implanted in canine left bundle branch function competitively with electronic pacemakers (EPM). We hypothesized that BPM engineered with the use of mE324A mutant murine HCN2 (mHCN2) genes would improve function over mHCN2 and that BPM/EPM tandems confer advantage over either approach alone. METHODS AND RESULTS In(More)
Differentiation of P19 embryonal carcinoma cells in response to the morphogen retinoic acid is regulated by Galpha(12/13) and is associated with activation of c-Jun N-terminal kinase. The role of MEKK1 and MEKK4 upstream of the c-Jun N-terminal kinase was investigated in P19 cells. P19 clones stably expressing constitutively active and dominant negative(More)