Learn More
The crystal structure of an open form of the Escherichia coli MscS mechanosensitive channel was recently solved. However, the conformation of the closed state and the gating transition remain uncharacterized. The pore-lining transmembrane helix contains a conserved glycine- and alanine-rich motif that forms a helix-helix interface. We show that introducing(More)
The mechanosensitive channel of large conductance, MscL, of Escherichia coli is one of the best-studied mechanosensitive proteins. Although the structure of the closed or "nearly-closed" state of the Mycobacterium tuberculosis ortholog has been solved and mechanisms of gating have been proposed, the transition from the closed to the open states remains(More)
The mechanosensitive channel of large conductance, MscL, serves as a biological emergency release valve protecting bacteria from acute osmotic downshock and is to date the best characterized mechanosensitive channel. A well-recognized and supported model for Escherichia coli MscL gating proposes that the N-terminal 11 amino acids of this protein form a(More)
The mechanosensitive channel of large conductance (MscL) from E. coli serves as an emergency release valve allowing the cell to survive acute osmotic downshock. It is one of the best studied mechanosensitive channels and serves as a paradigm for how a protein can sense and respond to membrane tension. Two MscL crystal structures of the orthologs M.(More)
Mechanosensors are important for many life functions, including the senses of touch, balance, and proprioception; cardiovascular regulation; kidney function; and osmoregulation. Many channels from an assortment of families are now candidates for eukaryotic mechanosensors and proprioception, as well as cardiovascular regulation, kidney function, and(More)
Mechanosensitive (MS) channels are universal cellular membrane pores. Bacterial MS channels, as typified by MS channel of small conductance (MscS) from Escherichia coli (EcMscS), release osmolytes under hypoosmotic conditions. MS channels are known to be ion selective to different extents, but the underlying mechanism remains poorly understood. Here we(More)
Serotonin [5-hydroxytryptamine (5-HT)] is a conspicuous neuromodulator of sensory-motor networks that affects a variety of neurons at different levels of the network hierarchy. Because of its many possible targets, it has been difficult to obtain a comprehensive picture of how 5-HT achieves its final modulatory output on any given network. Our hypothesis is(More)
The mechanosensitive channel of large conductance, MscL, has been proposed as a triggered nanovalve to be used in drug release and other nanodevices. It is a small homopentameric bacterial protein that has the largest gated pore known: greater than 30 Å. Large molecules, even small proteins can be released through MscL. Although MscL normally gates in(More)
The mechanosensitive channel of large conductance, MscL, serves as a biological emergency release valve protecting bacteria from acute osmotic downshock, and is to date the best characterized mechanosensitive channel. The N-terminal region of the protein has been shown to be critical for function by random, site-directed, and deletion mutagenesis, yet is(More)
The bacterial mechanosensitive channel MscL is the best-studied mechanosensor, thus serving as a paradigm of how a protein senses and responds to mechanical force. Models for the transition of Escherichia coli MscL from closed to open states propose a tilting of the transmembrane domains in the plane of the membrane, suggesting dynamic protein-lipid(More)