Learn More
Confocal laser scanning microscopy (CLSM) has been employed as a method for studying intact natural biofilm. When combined with fluorescence in situ hybridization (FISH) it is possible to analyze spatial relationships and changes of specific members of microbial populations over time. The aim of this study was to perform a systematic description of the(More)
Less invasive excavation methods have been suggested for deep caries lesions. We tested the effects of stepwise vs. direct complete excavation, 1 yr after the procedure had been carried out, in 314 adults (from six centres) who had received treatment of a tooth with deep caries. The teeth had caries lesions involving 75% or more of the dentin and were(More)
It has become evident that aggregation or biofilm formation is an important survival mechanism for bacteria in almost any environment. In this review, we summarize recent visualizations of bacterial aggregates in several chronic infections (chronic otitis media, cystic fibrosis, infection due to permanent tissue fillers and chronic wounds) both as to(More)
The combined use of confocal laser scanning microscopy (CLSM) and fluorescent in situ hybridization (FISH) offers new opportunities for analysis of the spatial relationships and temporal changes of specific members of the microbiota of intact dental biofilms. The purpose of this study was to analyse the patterns of colonization and population dynamics of(More)
INTRODUCTION Quantative confocal laser scanning microscopy (CLSM) in combination with fluorescent in situ hybridization (FISH) may help to increase our knowledge about biofilm formation. The purpose of this study was to develop and evaluate a stereological method for quantification of bacteria in intact biofilm. The method was applied in a quantitative(More)
Microbiological studies of occlusal dental biofilms have hitherto been hampered by inaccessibility to the sampling site and demolition of the original biofilm architecture. This study shows for the first time the spatial distribution of bacterial taxa in vivo at various stages of occlusal caries, applying a molecular methodology involving preparation of(More)
BACKGROUND AND AIMS The scope of this working group was to review (1) ecological interactions at the dental biofilm in health and disease, (2) the role of microbial communities in the pathogenesis of periodontitis and caries, and (3) the innate host response in caries and periodontal diseases. RESULTS AND CONCLUSIONS A health-associated biofilm includes(More)
The aim of the present study was to investigate the clinical performance of a low-shrinkage silorane-based composite material (Filtek™ Silorane, 3 M-Espe) by comparing it with a methacrylate-based composite material (Ceram•X™, Dentsply DeTrey). A number of 72patients (158 restorations) participated in the study. After 5 years, a total of 107 restorations(More)
BACKGROUND Despite continued preventive efforts, dental caries remains the most common disease of man. Organic acids produced by microorganisms in dental plaque play a crucial role for the development of carious lesions. During early stages of the pathogenetic process, repeated pH drops induce changes in microbial composition and favour the establishment of(More)
pH in the extracellular matrix of bacterial biofilms is of central importance for microbial metabolism. Biofilms possess a complex three-dimensional architecture characterized by chemically different microenvironments in close proximity. For decades, pH measurements in biofilms have been limited to monitoring bulk pH with electrodes. Although pH(More)