Irene B Castaño

Learn More
The pathogenic yeast Candida glabrata is able to bind in vitro to human epithelial cells. This interaction depends on expression of the adhesin Epa1p. The genome contains a number of EPA1 paralogues which localize to the subtelomeric regions of the C. glabrata. We have identified three hyperadherent mutants of C. glabrata. The first has an insertion(More)
The adherence of Candida glabrata to host cells is mediated, at least in part, by the EPA genes, a family of adhesins encoded at subtelomeric loci, where they are subject to transcriptional silencing. We show that normally silent EPA genes are expressed during murine urinary tract infection (UTI) and that the inducing signal is the limitation of nicotinic(More)
DNA topoisomerase I (topo I) is known to participate in the process of DNA replication, but is not essential in Saccharomyces cerevisiae. The TRF4 gene is also nonessential and was identified in a screen for mutations that are inviable in combination with a top1 null mutation. Here we report the surprising finding that a top1 trf4-ts double mutant is(More)
We characterized the oxidative stress response of Candida glabrata to better understand the virulence of this fungal pathogen. C. glabrata could withstand higher concentrations of H(2)O(2) than Saccharomyces cerevisiae and even Candida albicans. Stationary-phase cells were extremely resistant to oxidative stress, and this resistance was dependent on the(More)
Despite evidence that DNA topoisomerase I is required to relieve torsional stress during DNA replication and transcription, yeast strains with a top1 null mutation are viable and display no gross defects in DNA or RNA synthesis, possibly because other proteins provide overlapping functions. We isolated mutants whose inviablility or growth defect is relieved(More)
Candida glabrata is an important opportunistic pathogen causing both mucosal and bloodstream infections. C. glabrata is able to adhere avidly to mammalian cells, an interaction that depends on the Epa1p lectin. EPA1 is shown here to be a member of a larger family of highly related genes encoded in subtelomeric clusters. Subtelomeric clustering of large(More)
We recently reported the identification of a gene, TRF4 (for DNA topoisomerase related function), in a screen for mutations that are synthetically lethal with mutations in DNA topoisomerase I (top1). Here we describe the isolation of a second member of the TRF4 gene family, TRF5. Overexpression of TRF5 complements the inviability of top1 trf4 double(More)
Establishment of cohesion between sister chromatids is coupled to replication fork passage through an unknown mechanism. Here we report that TRF4, an evolutionarily conserved gene necessary for chromosome segregation, encodes a DNA polymerase with beta-polymerase-like properties. A double mutant in the redundant homologs, TRF4 and TRF5, is unable to(More)
We describe and characterize a method for insertional mutagenesis of the yeast pathogen Candida glabrata using the bacterial transposon Tn7. Tn7 was used to mutagenize a C. glabrata genomic fosmid library. Pools of random Tn7 insertions in individual fosmids were recovered by transformation into Escherichia coli. Subsequently, these were introduced by(More)
Candida glabrata, a common opportunistic fungal pathogen, adheres efficiently to mammalian epithelial cells in culture. This interaction in vitro depends mainly on the adhesin Epa1, one of a large family of cell wall proteins. Most of the EPA genes are located in subtelomeric regions, where they are transcriptionally repressed by silencing. In order to(More)