Irène Maire

Learn More
BACKGROUND In mucopolysaccharidosis type IIIB, a lysosomal storage disease causing early onset mental retardation in children, the production of abnormal oligosaccharidic fragments of heparan sulfate is associated with severe neuropathology and chronic brain inflammation. We addressed causative links between the biochemical, pathological and inflammatory(More)
The purpose of this work was to test the hypothesis that mutations in the putative glucose 6-phosphate translocase gene would account for most of the cases of GSD I that are not explained by mutations in the phosphohydrolase gene, ie that are not type Ia. Twenty-three additional families diagnosed as having GSD I non-a (GSDIb, Ic or Id) have now been(More)
Over the last 15 years, we have performed a total of 30 haematopoietic stem cell transplants on 27 children suffering from Hurler's syndrome. These children were of median age 11 months at the time of diagnosis and 25 months at the time of transplantation. The phenotype was severe in 21 cases (78%). The donor was familial in 13 cases: nine genotypically(More)
BACKGROUND Strokes related to intracranial aneurysm or arteriopathy have been reported in a few patients with late-onset Pompe disease. These reports suggested that cerebral vessel involvement could be an underrecognized complication of this disease. METHODS We report cerebral artery involvement in three French patients with late-onset Pompe disease. (More)
Glycogen-storage diseases type I (GSD type I) are due to a deficiency in glucose-6-phosphatase, an enzymatic system present in the endoplasmic reticulum that plays a crucial role in blood glucose homeostasis. Unlike GSD type Ia, types Ib and Ic are not due to mutations in the phosphohydrolase gene and are clinically characterized by the presence of(More)
Sanfilippo syndrome is a mucopolysaccharidosis (MPS) caused by a lysosomal enzyme defect interrupting the degradation pathway of heparan sulfates. Affected children develop hyperactivity, aggressiveness, delayed development, and severe neuropathology. We observed relevant behaviors in the mouse model of Sanfilippo syndrome type B (MPSIIIB), in which the(More)
Sanfilippo syndrome, or mucopolysaccharidosis type III (MPSIII) is a lysosomal storage disease with predominant neurological manifestations in affected children. It is considered heterogeneous with respect to prevalence, clinical presentation, biochemistry (four biochemical forms of the disease referred to as MPSIIIA, B, C, and D are known), and causative(More)
Mucopolysaccharidosis IIIC (MPS IIIC, or Sanfilippo C syndrome) is a lysosomal storage disorder caused by the inherited deficiency of the lysosomal membrane enzyme acetyl-coenzyme A: alpha -glucosaminide N-acetyltransferase (N-acetyltransferase), which leads to impaired degradation of heparan sulfate. We report the narrowing of the candidate region to a(More)
In five cases of X-linked liver glycogenosis subtype 2 (XLG2), we have identified mutations in the gene encoding the liver isoform of the phosphorylase kinase alpha subunit (PHKA2). XLG2 is a rare variant of X-linked phosphorylase kinase (Phk) deficiency of the liver. Whereas in the more common form of X-linked hepatic Phk deficiency, XLG1, the enzyme's(More)
Lysosomal sialidase (EC 3.2.1.18) has a dual physiological function; it participates in intralysosomal catabolism of sialylated glycoconjugates and is involved in cellular immune response. Mutations in the sialidase gene NEU1, located on chromosome 6p21.3, result in autosomal recessive disorder, sialidosis, which is characterized by the progressive(More)