Learn More
In order to reduce the computational complexity, most of the video classification approaches represent video data at frame level. In this paper we investigate a novel perspective that combines frame features to create a global descriptor. The main contributions are: (i) a fast algorithm to densely extract global frame features which are easier and faster to(More)
Feature extraction and encoding represent two of the most crucial steps in an action recognition system. For building a powerful action recognition pipeline it is important that both steps are efficient and in the same time provide reliable performance. This work proposes a new approach for feature extraction and encoding that allows us to obtain real-time(More)
For an action recognition system a decisive component is represented by the feature encoding part which builds the final representation that serves as input to a classifier. One of the shortcomings of the existing encoding approaches is the fact that they are built around hand-crafted features and they are not also highly competitive on encoding the current(More)
  • 1