Ioannis Parastatidis

Learn More
S-nitrosylation, the selective modification of cysteine residues in proteins to form S-nitrosocysteine, is a major emerging mechanism by which nitric oxide acts as a signaling molecule. Even though nitric oxide is intimately involved in the regulation of vascular smooth muscle cell functions, the potential protein targets for nitric oxide modification as(More)
Although the higher incidence of stress-related psychiatric disorders in females is well documented, its basis is unknown. Here, we show that the receptor for corticotropin-releasing factor (CRF), the neuropeptide that orchestrates the stress response, signals and is trafficked differently in female rats in a manner that could result in a greater response(More)
The mechanisms that govern the formation of alpha-synuclein (alpha-syn) aggregates are not well understood but are considered a central event in the pathogenesis of Parkinson's disease (PD). A critically important modulator of alpha-syn aggregation in vitro is dopamine and other catechols, which can prevent the formation of alpha-syn aggregates in cell-free(More)
Elevated levels of circulating fibrinogen are associated with an increased risk of atherothrombotic diseases although a causative correlation between high levels of fibrinogen and cardiovascular complications has not been established. We hypothesized that a potential mechanism for an increased prothrombotic state is the post-translational modification of(More)
This schematic illustrates sex differences in corticotropin-releasing factor receptor (CRFr) function. CRFr coupling to the GTP-binding protein, Gs is greater in the female compared to the male neuron, an effect that can result in increased cellular signaling in response to stress in females. In the male neuron (right) stress induces CRFr association with(More)
The inflamed lung exhibits oxidative and nitrative modifications of multiple target proteins, potentially reflecting disease severity and progression. We identified sphingosine-1-phosphate receptor-3 (S1PR3), a critical signaling molecule mediating cell proliferation and vascular permeability, as a nitrated plasma protein in mice with acute lung injury(More)
The roles of astrocytes in the CNS have been expanding beyond the long held view of providing passive, supportive functions. Recent evidence has identified roles in neuronal development, extracellular matrix maintenance, and response to inflammatory challenges. Therefore, insights into astrocyte secretion are critically important for understanding(More)
Apolipoprotein A-I (apoA-I), the major protein constituent within high-density lipoprotein (HDL), has been associated with antiatherogenic protection by mechanisms that include reverse cholesterol transport and antiinflammatory functions. To evaluate the proposed protective function of apoA-I, proteins modified by nitrating oxidants were evaluated in the(More)
Elevated plasma fibrinogen is a prothrombotic risk factor for cardiovascular disease (CVD). Recent small studies report that fibrinogen oxidative modifications, specifically tyrosine residue nitration, can occur in inflammatory states and may modify fibrinogen function. HDL cholesterol is inversely related to CVD and suggested to reduce the oxidation of LDL(More)
BACKGROUND Several lines of evidence support a pathophysiological role of immunity in atherosclerosis. Tyrosine-nitrated proteins, a footprint of oxygen- and nitrogen-derived oxidants generated by cells of the immune system, are enriched in atheromatous lesions and in circulation of patients with coronary artery disease (CAD). However, the consequences of(More)
  • 1