Learn More
In eukaryotic cells, localized actin polymerization is able to deform the plasma membrane and push the cell forward. Depolymerization of actin filaments and diffusion of actin monomers ensure the availability of monomers at sites of polymerization, and therefore these processes must play an active role in cellular actin dynamics. Here we reveal experimental(More)
We investigate the cholesteric-nematic transition induced by an external bulk field in a sample of finite thickness ℓ. The analysis is performed by considering a tilted magnetic field with respect to the easy direction imposed by rigid boundary conditions inducing planar orientation. In the case of parallel orientation between the magnetic field and of the(More)
We analyze the models that account the ionic contribution to the complex dielectric constant of a nematic liquid crystal. We compare the predictions of the model of [Sawada, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 318, 225 (1998)] based on the assumption that the electric field in the liquid coincides with the applied one, with the model of Macdonald(More)
We investigate the influence of two groups of ions on the complex dielectric constant of a nematic liquid crystal limited by perfectly blocking electrodes. The analysis is performed by solving the equations of continuity for the two groups of cations and anions, and the equation of Poisson relating the actual electric field to the net density of charge. We(More)
We investigate the critical behavior of the three-dimensional random-field Ising model (RFIM) with a Gaussian field distribution at zero temperature. By implementing a computational approach that maps the ground-state of the RFIM to the maximum-flow optimization problem of a network, we simulate large ensembles of disorder realizations of the model for a(More)
The effect of the generation-recombination phenomenon on the electrical impedance of an electrolytic cell is investigated. We show that this phenomenon could be responsible for the appearance of a plateau in the real part of the impedance of the cell. The possibility to observe the plateau, arising from the generation-recombination phenomenon, is discussed(More)
The twist-bend nematic phase, N_{TB}, may be viewed as a heliconical molecular arrangement in which the director n precesses uniformly about an extra director field, t. It corresponds to a nematic ground state exhibiting nanoscale periodic modulation. To demonstrate the stability of this phase from the elastic point of view, a natural extension of the Frank(More)
An array of edge dislocation forms spontaneously in a Grandjean-Cano wedge filled by a smectic liquid crystal. In the vicinity of the smectic A to smectic C transition, these defects are visible under the microscope [R. B. Meyer, B. Stebler, and S. T. Lagerwall, Phys. Rev. Lett. 41, 1393 (1978)]. This paper deals with their dynamics under controlled(More)
We investigate the role of the displacement current in the analysis of the electric response of an electrolytic cell to an external stimulus. We show that several models proposed to interpret the spectra deduced by means of the impedance spectroscopy technique are questionable. In particular, we demonstrate that even in the frequency range below the Debye(More)
The possibility of spontaneous periodic distortions, depending on the tilt angle in a nematic liquid crystal sample, is investigated by means of a general formulation of the stability problem. It is shown that due to the presence of a surfacelike term in the free-energy density, the uniform pattern can be destabilized, giving rise to a periodic distortion(More)