Ioannis Hatzilygeroudis

Learn More
In this paper, we present the architecture and describe the functionality of a Web-based Intelligent Tutoring System (ITS), which uses neurules for knowledge representation. Neurules are a type of hybrid rules integrating symbolic rules with neurocomputing. The use of neurules as the knowledge representation basis of the ITS results in a number of(More)
In this paper, we present an approach that integrates symbolic rules, neural networks and cases. To achieve it, we integrate a kind of hybrid rules, called neurules, with cases. Neurules integrate symbolic rules with the Adaline neural unit. In the integration, neurules are used to index cases representing their exceptions. In this way, the accuracy of the(More)
Neurules are a kind of hybrid rules integrating neurocomputing and production rules. Each neurule is represented as an adaline unit. Thus, the corresponding neurule base consists of a number of autonomous adaline units (neurules). Due to this fact, a modular and natural knowledge base is constructed, in contrast to existing connectionist knowledge bases. In(More)
An inference engine for a hybrid representation scheme based on neurules is presented. Neurules are a kind of hybrid rules that combine a symbolic (production rules) and a connectionist representation (adaline unit). The inference engine uses a connectionist technique, which is based on the 'firing potential', a measurement of the firing tendency of a(More)
Rule-based and case-based reasoning are two popular approaches used in intelligent systems. Rules usually represent general knowledge, whereas cases encompass knowledge accumulated from specific (specialized) situations. Each approach has advantages and disadvantages, which are proved to be complementary in a large degree. So, it is well-justified to(More)
In this paper, we first present and compare existing categorization schemes for neuro-symbolic approaches. We then stress the point that not all hybrid neuro-symbolic approaches can be accommodated by existing categories. Such a case is rule-based neuro-symbolic approaches that propose a unified knowledge representation scheme suitable for use in expert(More)
In this paper, we make a first effort to define requirements for knowledge representation (KR) in an ITS. The requirements concern all stages of an ITS's life cycle (construction, operation and maintenance), all types of users (experts, engineers, learners) and all its modules (domain knowledge, user model, pedagogical model). We also briefly present and(More)
In this paper, we present an approach integrating neurule-based and case-based reasoning. Neurules are a kind of hybrid rules that combine a symbolic (production rules) and a connectionist representation (adaline unit). Each neurule is represented as an adaline unit. One way that the neurules can be produced is from symbolic rules by merging the symbolic(More)