Ioannis Chatzigeorgiou

Learn More
— In this paper, we investigate in detail the performance of turbo codes in quasi-static fading channels both with and without antenna diversity. First, we develop a simple and accurate analytic technique to evaluate the performance of turbo codes in quasi-static fading channels. The proposed analytic technique relates the frame error rate of a turbo code(More)
—This paper considers the multiple-access relay channel in a setting where two source nodes transmit packets to a destination node, both directly and via a relay node, over packet erasure channels. Intra-session network coding is used at the source nodes and inter-session network coding is employed at the relay node to combine the recovered source packets(More)
— It is known that the frame error rate of turbo codes on quasi-static fading channels can be accurately approximated using the convergence threshold of the corresponding iterative decoder. This paper considers quasi-static fading channels and demonstrates that non-iterative schemes can also be characterized by a similar threshold based on which their frame(More)
—The explosive growth of content-on-the-move, such as video streaming to mobile devices, has propelled research on multimedia broadcast and multicast schemes. Multi-rate transmission strategies have been proposed as a means of delivering layered services to users experiencing different downlink channel conditions. In this paper, we consider(More)
—In this paper, we compare cooperative networks using either coded amplify-and-forward, coded cooperation or distributed turbo coding, over quasi-static fading channels under the condition of identical data rate and power consumption. We demonstrate that, when the quality of the communication channels is sufficiently high, cooperative transmission provides(More)
It has been demonstrated that turbo codes substantially outperform other codes, e.g., convolutional codes, both in the non-fading additive white Gaussian noise (AWGN) channel as well as multiple-transmit and multiple-receive antenna fading channels. Moreover, it has also been reported that turbo codes perform very well in fast fading channels, but perform(More)
Turbo codes, in the form of parallel concatenated convolutional codes, consist of two recursive systematic convolutional encoders separated by an interleaver. Due to the presence of the interleaver, each constituent convolutional encoder accepts as input a block of information bits with a size equal to that of the interleaver rather than a continuous stream(More)
The performance of turbo codes in quasi-static fading channels both with and without antenna diversity is investigated. In particular, simple analytic techniques that relate the frame error rate of a turbo code to both its average distance spectrum as well as the iterative decoder convergence characteristics are developed. Both by analysis and simulation,(More)
Proper selection of a signal-to-noise ratio (SNR) threshold largely determines the tightness of an approximation to the frame error rate of a system over a quasi-static fading channel. We demonstrate that the expression for the optimal threshold value, which has been established for single-input single-output (SISO) channels, remains unchanged for the(More)
—We derive an adaptive power control method for a collaborative network utilizing partner selection that aims to minimize the frame error rate (FER). We model a decode-and-forward (DF) collaborative network under block fading conditions, which contains M independent users utilizing codes, whose performance can be expressed by a signal to noise (SNR)(More)