Learn More
The dynamics of pigment-pigment and pigment-protein interactions in light-harvesting complexes is studied with an approach that combines molecular dynamics simulations with quantum chemistry calculations and a polaron model analysis. The molecular dynamics simulation of light-harvesting (LH) complexes was performed on an 87 055 atom system comprised of a(More)
Morphogenesis implies the controlled spatial organization of cells that gives rise to tissues and organs in early embryonic development. While morphogenesis is under strict genetic control, the formation of specialized biological structures of specific shape hinges on physical processes. Tissue engineering (TE) aims at reproducing morphogenesis in the(More)
A distinguishing feature of a multicellular living system is that it operates at various scales, from the intracellular to organismal. Genes and molecules set up the conditions for the physical processes to act, in particular to shape the embryo. As development continues the changes brought about by the physical processes lead to changes in gene expression.(More)
As a theoretical framework for understanding the self-assembly of living cells into tissues, Steinberg proposed the differential adhesion hypothesis (DAH) according to which a specific cell type possesses a specific adhesion apparatus that combined with cell motility leads to cell assemblies of various cell types in the lowest adhesive energy state.(More)
With the widespread availability of high performance computer clusters and effi cient parallel molecular modeling software, molecular dynamics (MD) simulations became an indispensable tool for the study of the structure-function relationship in proteins with known crystal structures. However, understanding at atomic level the functioning of membrane bound(More)
The boundary integral method for calculating the stationary states of a quantum particle in nano-devices and quantum billiards is presented in detail at an elementary level. According to the method, wave functions inside the domain of the device or billiard are expressed in terms of line integrals of the wave function and its normal derivative along the(More)
An epithelial-mesenchymal transformation (EMT) involves alterations in cell-cell and cell-matrix adhesion, the detachment of epithelial cells from their neighbors, the degradation of the basal lamina and acquisition of mesenchymal phenotype. Here we present Monte Carlo simulations for a specific EMT in early heart development: the formation of cardiac(More)
Often gaining insight into the functioning of biomolecular systems requires to follow their dynamics along a microscopic reaction coordinate (RC) on a macroscopic time scale, which is beyond the reach of current all atom molecular dynamics (MD) simulations. A practical approach to this inherently multiscale problem is to model the system as a fictitious(More)