Learn More
Nicotine-induced attentional enhancement is of potential therapeutic value. To investigate the precise attentional function(s) affected and their neuronal mechanisms, the current functional magnetic resonance imaging (fMRI) study used an attention task in which subjects responded to stimuli of high (INT(high)) or low intensity presented randomly in one of(More)
Bile acid concentrations are controlled by a feedback regulatory pathway whereby activation of the farnesoid X receptor (FXR) represses transcription of both the CYP7A1 gene, encoding the rate-limiting enzyme in the classic bile acid synthesis pathway, and the CYP8B1 gene, required for synthesis of cholic acid. The tissue-specific roles of FXR were examined(More)
The farnesoid X receptor (FXR) controls the synthesis and transport of bile acids (BAs). Mice lacking expression of FXR, designated Fxr-null, have elevated levels of serum and hepatic BAs and an increase in BA pool size. Surprisingly, at 12 months of age, male and female Fxr-null mice had a high incidence of degenerative hepatic lesions, altered cell foci(More)
Based on animal data, there is speculation that (+ or -)-3,4-methylenedioxymethamphetamine (MDMA) is neurotoxic to humans. Extrapolation of MDMA findings from animals to humans requires assessment of pharmacokinetics in various species, and low-dose administration data from rats are lacking. In this study, we examine MDMA pharmacokinetics in rats given low(More)
Animal studies reveal that fasting and caloric restriction produce increased activity of specific metabolic pathways involved in resistance to weight loss in liver. Evidence suggests that this phenomenon may in part occur through the action of the constitutive androstane receptor (CAR, NR1I3). Currently, the precise molecular mechanisms that activate CAR(More)
Pregnane X receptor (PXR) expression was shown to be protective in inflammatory bowel disease (IBD). However, the mechanism by which PXR provides protection remains unclear. Wild-type and Pxr-null mice were treated with the PXR agonist pregnenolone-16alpha-carbonitrile or vehicle and administered 2.5% dextran sulfate sodium (DSS) in drinking water to induce(More)
Hsp31 encoded by hchA is known as a heat-inducible molecular chaperone. Although structure studies revealed that Hsp31 has a putative catalytic triad consisting of Asp-214, His-186 and Cys-185, its enzymatic function, besides weak amino-peptidase activity, is still unknown. We found that Hsp31 displays glyoxalase activity that catalyses the conversion of(More)
The metabolic pathway involving dihydroxyacetone is poorly characterized although novel enzymes associated with this metabolite have recently been demonstrated. The role of GldA in dihydroxyacetone and methylglyoxal metabolism was investigated by purifying the enzyme and characterizing its catalytic ability using nuclear magnetic resonance (NMR)(More)
Cholesterol homeostasis is maintained by coordinate regulation of cholesterol synthesis and its conversion to bile acids in the liver. The excretion of cholesterol from liver and intestine is regulated by ATP-binding cassette half-transporters ABCG5 and ABCG8. The genes for these two proteins are closely linked and divergently transcribed from a common(More)
Methylglyoxal (MG) is a toxic metabolite known to accumulate in various cell types. We detected in vivo conversion of MG to acetol in MG-accumulating Escherichia coli cells by use of (1)H nuclear magnetic resonance ((1)H-NMR) spectroscopy. A search for homologs of the mammalian aldo-keto reductases (AKRs), which are known to exhibit activity to MG, revealed(More)