#### Filter Results:

- Full text PDF available (4)

#### Publication Year

2014

2017

- This year (2)
- Last 5 years (5)
- Last 10 years (5)

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

The effective use of composite materials in the technology industry requires the development of accurate models. Typical such materials in electrotechnical applications are lamination stacks and soft magnetic composites, used in the so-called magnetoquasistatic (low frequency) regime. Current homogenization models (e.g. the classical homogenization method,… (More)

- Sebastian Schöps, Innocent Niyonzima, Markus Clemens
- ArXiv
- 2017

Sebastian Schöps1, Innocent Niyonzima2, and Markus Clemens3 1Technische Universität Darmstadt, Institut für Theorie Elektromagnetischer Felder, Schlossgartenstrasse 8, D-64289 Darmstadt, Germany 2Columbia University, Civil Engineering and Engineering Mechanics, 500 West 120th Street, New York, NY 10027, USA 3University of Wuppertal, Chair of Electromagnetic… (More)

- Melina Merkel, Innocent Niyonzima, Sebastian Schops
- 2016 URSI International Symposium on…
- 2016

Recently, ParaExp was proposed for the time integration of hyperbolic problems. It splits the time interval of interest into sub-intervals and computes the solution on each sub-interval in parallel. The overall solution is decomposed into a particular solution defined on each sub-interval with zero initial conditions and a homogeneous solution propagated by… (More)

- Melina Merkel, Innocent Niyonzima, Sebastian Schöps
- ArXiv
- 2017

Recently, ParaExp was proposed for the time integration of linear hyperbolic problems. It splits the time interval of interest into sub-intervals and computes the solution on each sub-interval in parallel. The overall solution is decomposed into a particular solution defined on each sub-interval with zero initial conditions and a homogeneous solution… (More)

- Innocent Niyonzima, Christophe Geuzaine, Sebastian Schöps
- J. Comput. Physics
- 2016

This paper proposes the application of the waveform relaxation method to the homogenization of mul-tiscale magnetoquasistatic problems. In the monolithic heterogeneous multiscale method, the nonlinear macroscale problem is solved using the Newton–Raphson scheme. The resolution of many mesoscale problems per Gauß point allows to compute the homogenized… (More)

- ‹
- 1
- ›