Learn More
Cocrystallization and salt formation have been shown to entail substantial promise in tailoring the physicochemical properties of drug compounds, in particular, their dissolution and hygroscopicity. In this work, we report on the preparation and comparative evaluation of a new cocrystal of itraconazole and malonic acid and two new hydrochloric salts(More)
By maximizing our understanding of materials and the relative importance of interactions on all levels (i.e., molecular, particle, powder, product), we can improve the manufacture of drug dosage forms and thus meet target specifications for mechanical durability, stability and biopharmaceutical performance. Pharmaceutical co-crystals are the latest material(More)
Nanosizing is an advanced formulation approach to address the issues of poor aqueous solubility of active pharmaceutical ingredients. Here we present a procedure to prepare a nanoparticulate formulation with the objective to enhance dissolution kinetics of taxifolin dihydrate, a naturally occurring flavonoid with antioxidant, anti-inflammatory, and(More)
Several biologically relevant phospholipids were assessed as potential carriers/additives for rapidly dissolving solid formulations of piroxicam (Biopharmaceutics Classification System Class II drug). On the basis of in vitro dissolution studies, dimyristoylphosphatidylglycerol (DMPG) was ranked as the first potent dissolution rate enhancer for the model(More)
Crystal morphology engineering of a macrolide antibiotic, erythromycin A dihydrate, was investigated as a tool for tailoring tabletting performance of pharmaceutical solids. Crystal habit modification was induced by using a common pharmaceutical excipient, hydroxypropyl cellulose, as an additive during crystallization from solution. Observed morphology of(More)
An at-line process analytical approach was applied to better understand process-induced transformations of erythromycin dihydrate during pellet manufacture (extrusion-spheronisation and drying process). The pellets contained 50% (w/w) erythromycin dihydrate and 50% (w/w) microcrystalline cellulose, with purified water used as a granulating fluid. To(More)
A thorough understanding of solid state properties is of growing importance. It is often necessary to apply multiple techniques offering complementary information to fully understand the solid state behavior of a given compound and the relations between various polymorphic forms. The vast amount of information generated can be overwhelming and the need for(More)
Quantitative analysis of the molecular conformations of the 14-membered macrolide antibiotics erythromycin A and B, clarithromycin, and roxithromycin in the solid state was performed. While the erythronolide macrocycle adopts a very similar folded-out conformation in all the macrolides studied, the proximity of the monosaccharide moieties, L-cladinose and(More)
In this study, microfluidic technology was employed to develop protein formulations. The microcapsules were produced with a biphasic flow to create water-oil-water (W/O/W) double emulsion droplets with ultrathin shells. Optimized microcapsule formulations containing 1% (w/w) bovine serum albumin (BSA) in the inner phase were prepared with poly(vinyl(More)
The influence of the organic solvents widely used in the pharmaceutical industry (acetone, methylethylketone, ethanol, and isopropanol) both in the presence and in the absence of water on the crystallization behavior of erythromycin (Em), a clinically relevant antibiotic of the macrolide group, was investigated. It was observed that despite a high(More)