Inn Chuan Ng

  • Citations Per Year
Learn More
The TGF-β/Smad signaling system decreases its activity through strong negative regulation. Several molecular mechanisms of negative regulation have been published, but the relative impact of each mechanism on the overall system is unknown. In this work, we used computational and experimental methods to assess multiple negative regulatory effects on Smad(More)
BACKGROUND & AIMS A wide range of liver diseases manifest as biliary obstruction, or cholestasis. However, the sequence of molecular events triggered as part of the early hepatocellular homeostatic response in obstructive cholestasis is poorly elucidated. Pericanalicular actin is known to accumulate during obstructive cholestasis. Therefore, we hypothesized(More)
The TGF-b/Smad signaling system decreases its activity through strong negative regulation. Several molecular mechanisms of negative regulation have been published, but the relative impact of each mechanism on the overall system is unknown. In this work, we used computational and experimental methods to assess multiple negative regulatory effects on Smad(More)
Liver is highly regenerative as it can restore its function and size even after 70% partial hepatectomy. During liver regeneration, the mechanical and chemical environment of liver is altered with accumulation of various growth factors and remodeling of extracellular environment. Cells can sense the changes in their cellular environment through various(More)
A wide range of liver diseases manifest as biliary obstruction, or cholestasis. However, the sequence of molecular events triggered as part of the early hepatocellular homeostatic response to abnormal elevations in biliary pressure remains poorly elucidated. Bile canaliculi are dynamic luminal structures that undergo actomyosin-mediated periodic(More)
Chemotaxis in shallow gradients of chemoattractants is accomplished by preferential maintenance of protrusions oriented towards the chemoattractant; however, the mechanism of preferential maintenance is not known. Here, we test the hypothesis that kinectin-dependent endoplasmic reticulum (ER) transport supports focal complex maturation to preferentially(More)
  • 1