Learn More
Whether the balance between integration and segregation of information in the brain is damaged in Mild Cognitive Impairment (MCI) subjects is still a matter of debate. Here we characterize the functional network architecture of MCI subjects by means of complex networks analysis. Magnetoencephalograms (MEG) time series obtained during a memory task were(More)
Recovery after brain injury is an excellent platform to study the mechanism underlying brain plasticity, the reorganization of networks. Do complex network measures capture the physiological and cognitive alterations that occurred after a traumatic brain injury and its recovery? Patients as well as control subjects underwent resting-state MEG recording(More)
An initial unsynchronized ensemble of networking phase oscillators is further subjected to a growing process where a set of forcing oscillators, each one of them following the dynamics of a frequency pacemaker, are added to the pristine graph. Linking rules based on dynamical criteria are followed in the attachment process to force phase locking of the(More)
Although the functioning of real complex networks is greatly determined by modularity, the majority of articles have focused, until recently, on either their local scale structure or their macroscopical properties. However, neither of these descriptions can adequately describe the important features that complex networks exhibit due to their organization in(More)
In vitro primary cultures of dissociated invertebrate neurons from locust ganglia are used to experimentally investigate the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. At all the different stages of the culture's development, identification of(More)
Protein interaction networks have become a tool to study biological processes, either for predicting molecular functions or for designing proper new drugs to regulate the main biological interactions. Furthermore, such networks are known to be organized in sub-networks of proteins contributing to the same cellular function. However, the protein function(More)
The response of a random and modular network to the simultaneous presence of two frequencies is considered. The competition for controlling the dynamics of the network results in different behaviors, such as frequency changes or permanent synchronization frustration, which can be directly related to the network structure. From these observations, we propose(More)