Learn More
The gamma-aminobutyric acid (GABA) type A receptor (GABA(A)R) is the major inhibitory neurotransmitter receptor in the brain. Its multiple subunits show regional, developmental, and disease-related plasticity of expression; however, the regulatory networks controlling GABA(A)R subunit expression remain poorly understood. We report that the seizure-induced(More)
The regulated expression of type A gamma-aminobutyric acid (GABA) receptor (GABA(A)R) subunit genes plays a critical role in neuronal maturation and synaptogenesis. It is also associated with a variety of neurological diseases. Changes in GABA(A) receptor alpha1 subunit gene (GABRA1) expression have been reported in animal models of epilepsy, alcohol abuse,(More)
Differential expression of GABA(A) receptor (GABR) subunits has been demonstrated in hippocampus from patients and animals with temporal lobe epilepsy (TLE), but whether these changes are important for epileptogenesis remains unknown. Previous studies in the adult rat pilocarpine model of TLE found reduced expression of GABR alpha1 subunits and increased(More)
PURPOSE Previous studies in neonatal (postnatal day 10) and adult rats suggest that status epilepticus (SE) induces changes in the alpha1 subunit of the GABA(A) receptor (GABRA1) in dentate granule neurons (DGNs) that are age dependent and vary inversely with the likelihood of epilepsy development. In the present study, we examined GABRA1 expression after(More)
GABA is the major inhibitory transmitter at CNS synapses. Changes in subunit composition of the pentameric GABA(A) receptor, including increased levels of alpha4 subunit in dentate granule cells and associated functional alterations such as increased zinc blockade of GABA currents, are hypothesized to be critical components of epileptogenesis. Here, we(More)
Altered function of gamma-aminobutyric acid type A receptors (GABA(A)Rs) in dentate granule cells of the hippocampus has been associated with temporal lobe epilepsy (TLE) in humans and in animal models of TLE. Such altered receptor function (including increased inhibition by zinc and lack of modulation by benzodiazepines) is related, in part, to changes in(More)
Alterations in the brain that contribute to the development of epilepsy, also called epileptogenesis, are not well understood, which makes it difficult to develop strategies for preventing epilepsy. Here we have studied the role of the CRE binding transcription factors, cyclic-AMP responsive element modulator (CREM) and inducible cyclic-AMP early repressor(More)
  • 1