Ingrid Spadinger

Learn More
In this paper we report and characterize a semi-automatic prostate segmentation method for prostate brachytherapy. Based on anatomical evidence and requirements of the treatment procedure, a warped and tapered ellipsoid was found suitable as the a-priori 3D shape of the prostate. By transforming the acquired endorectal transverse images of the prostate into(More)
Prostate segmentation from trans-rectal transverse B-mode ultrasound images is required for radiation treatment of prostate cancer. Manual segmentation is a time-consuming task, the results of which are dependent on image quality and physicians' experience. This paper introduces a semi-automatic 3D method based on super-ellipsoidal shapes. It produces a 3D(More)
Delineation of the prostate from transrectal ultrasound images is a necessary step in several computer-assisted clinical interventions, such as low dose rate brachytherapy. Current approaches to user segmentation require user intervention and therefore it is subject to user errors. It is desirable to have a fully automatic segmentation for improved(More)
Low-dose-rate prostate brachytherapy treatment takes place by implantation of small radioactive seeds in and sometimes adjacent to the prostate gland. A patient specific target anatomy for seed placement is usually determined by contouring a set of collected transrectal ultrasound images prior to implantation. Standard-of-care in prostate brachytherapy is(More)
The problem of accurate dose accumulation in fractionated radiotherapy treatment for highly deformable organs, such as bladder, has garnered increasing interest over the past few years. However, more research is required in order to find a robust and efficient solution and to increase the accuracy over the current methods. The purpose of this study was to(More)
Low-dose-rate brachytherapy is a radiation treatment method for localized prostate cancer. The standard of care for this treatment procedure is to acquire transrectal ultrasound images of the prostate in order to devise a plan to deliver sufficient radiation dose to the cancerous tissue. Brachytherapy planning involves delineation of contours in these(More)
A common challenge when performing surface-based registration of images is ensuring that the surfaces accurately represent consistent anatomical boundaries. Image segmentation may be difficult in some regions due to either poor contrast, low slice resolution, or tissue ambiguities. To address this, we present a novel non-rigid surface registration method(More)
  • 1